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ABSTRACT* 

The urban noise environment comprises many sources, 
some of which are regulated by local legislation setting 
maximum permitted noise levels, which are vital in 
implementing the noise action plans. A multidisciplinary 
project funded by the Chilean R+D Agency has resulted in 
a machine learning-based system called FuSA that 
automatically recognizes sound sources in audio files 
recorded in the urban environment to assist in their analysis. 
FuSA (Integrated System for the Analysis of Environmental 
Sound Sources) incorporates a deep neural model 
transferred to a dataset of urban sound events compiled 
from public sources and recordings. The target dataset 
follows a customized taxonomy of urban sounds. The 
system also uses a public API so potential users can post 
audio files to determine the overall presence of noise 
sources contributing to environmental noise pollution. This 
work provides examples of how stakeholders can use FuSA 
to address urban noise problems and contribute to city noise 
abatement policies. 

Keywords: environmental noise, urban noise, machine 
learning, legislation.  

1. INTRODUCTION 

Recently, the application of neural networks to solve 
different problems in engineering has received renewed 
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attention. The main reason is that advances in 
computational resources, storage capability, and the 
availability of massive datasets have made the practical 
implementation of deep learning techniques possible. 
Reviews on the use of deep learning in acoustics and 
vibration have pointed out the advantages and limitations of 
such methods [1,2]. 
Deep learning (DL) is a branch of machine learning focused 
on training deep artificial neural networks (ANNs) to solve 
complex pattern recognition problems. ANNs are 
mathematical models inspired by biology. They consist of 
layers of artificial neurons that perform simple processing 
tasks when combined. In machine learning, models with 
more layers have greater flexibility to fit the training data 
accurately. This fact means that the deeper a model is, the 
better it can perform. DL models have achieved outstanding 
results, making them the top choice for many perception-
related issues, including computer vision, speech 
recognition, and natural language processing [3-5]. A 
significant challenge is that training deeper models requires 
more labeled data. Therefore, having large, high-quality 
datasets is essential for practical training. 
Transfer learning (TL) is a methodology that utilizes deep 
neural networks trained with a large amount of data to 
address a related and more specific problem [6]. In TL, the 
parameters of the final layers of the original model are 
adapted using a target dataset that may have a different 
class taxonomy than the source dataset for a specific task. 
This process is called fine-tuning. Therefore, it is possible 
to train a very deep and complex model with TL using a 
small target dataset, provided the source dataset is diverse 
enough. 
Earlier neural network architectures have been replaced by 
processing layers with neurons organized as convolutional 
filters inspired by the response of a neuron in the visual 
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cortex to a specific stimulus. Convolutional neural networks 
(CNNs) create deeper ANNs for larger inputs, like high-
resolution data [7,8]. Thus, currently, CNNs are alternatives 
to conventional, fully connected ANNs for temporally or 
spatially correlated signals, such as advanced sound event 
detection (SED). 
It is well-known that urban noise is a severe environmental 
problem growing over the years. Although the total urban 
noise comprises several sources, traffic noise is the most 
prevalent. However, due to their high sound levels, 
construction noise, entertainment, and leisure activities are 
commonly reported as sources of nuisance in the 
community. 
Modern cities have addressed environmental noise by 
primarily elaborating strategic noise maps [9] followed by 
noise action plans. Not only the average sound levels are 
essential for implementing noise control action plans. 
Identifying the prevalent sources composing the soundscape 
is also critical, especially when enforcing laws regarding 
acceptable noise levels in urban settings. Therefore, DL 
appears to be an excellent alternative for creating support 
tools for monitoring and mitigating the adverse effects of 
environmental noise.  
The Institutes of Acoustics and Informatics at the College 
of Engineering Sciences of the University Austral of Chile 
have completed a joint project titled “Integrated System for 
the Analysis of Environmental Sound Sources: FuSA 
System.” The Chilean R+D Agency funded the project to 
create a machine learning-based system that automatically 
recognizes sound sources in audio files recorded in the 
urban environment. Other cities, like New York and Lorient 
in France, have also conducted research on categorizing 
urban sound sources [10,11].  
The developed FuSA tools have aimed to be used by 
different stakeholders to address urban noise problems and 
contribute to city noise abatement policies. This work 
presents some examples of FuSA applications. 

2. THE FUSA SYSTEM 

2.1 Deep Learning model and dataset of urban sound 
events 

The FuSA system uses a deep neural model introduced in 
2020 by Kong et al. [12] called Pretrained Audio Neural 
Network (PANN), a powerful deep neural network model 
for audio tagging. This model has surpassed the 
performance of previous systems documented in the 
literature. PANN was trained using Google AudioSet, a 

dataset with over 2 million 10-second audio clips collected 
from YouTube and classified into 632 categories. 
In their work, Kong et al. conducted experiments where 
they used knowledge from Google AudioSet to solve audio 
tagging problems in different target datasets. Notably, the 
fine-tuned PANN model has performed better than the 
state-of-the-art in some general urban sound event datasets. 
The PANNs architecture consists of convolutional layers, 
i.e., processing layers with neurons organized as 
convolutional filters (see Fig. 1). An audio signal is 
processed within PANN through two paths. The first path 
utilizes a 1D convolutional neural network to analyze the 
waveform in the time domain. The network generates a 
WaveGram, a variation of the Fourier transform using 
neural networks. On the other hand, the second pathway 
converts the information into a log-scale mel spectrogram 
and enters a 2D convolutional neural network. The results 
from both paths are combined and further processed by a 
final 2D convolutional neural network. This network 
produces a probability estimate of whether various labels 
are present in the audio file. 
 

 

Figure 1. Diagram of the architecture of pre-trained 
audio neural networks (PANNs, see [12]). 
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The architecture of PANN has been applied to a dataset of 
urban sound events that includes recordings from public 
sources [13] as well as those taken by FuSA in Valdivia, 
Chile. The target dataset follows a customized taxonomy 
shown in Table 1.  

Table 1. Customized urban sound event taxonomy 
used in the FuSA system. 

Categories Subcategories 
Humans Talking, screaming, 

crowd, others 
Music Music  
Animals Dog, bird, others 
Environment Rain, wind, waterfall, 

thunder, others 
Mechanical Impact, cutting, 

explosion, drilling, 
others 

Vehicles Motorcycle, car, bus and 
truck, helicopter and 
plane, others 

Alerts Siren, alarm, horn, bell, 
others 

 
Users can post audio files of up to 60 seconds in various 
formats through the system’s API through an HTTP request 
(public.labacam.org), as shown schematically in Fig. 2.  
 

 

Figure 2. Workflow diagram of the 
public.labacam.org application. 
 
The PANNs model implemented in the web page is 
configured to receive 5-second audio segments so that 
audio signals that are longer are divided into 5-second 
pieces. The model predicts for each 5-second piece and 

calculates an average value to determine the overall 
presence of each tag in the audio input file. Finally, these 
values are displayed as a horizontal bar graph (see Figs. 3 
and 4).  

 

Figure 3. An example of the display of the overall 
presence of different sources in an audio input file 
where the sourced labelled as music and birds are 
prevalent. 

 

Figure 4. Another example of the display of the 
overall presence of different sources in an audio 
input file where the sources labelled as music and 
horn are predominant.  

3. MAIN USERS OF THE FUSA SYSTEM 

The FuSA system is designed to serve various purposes, a 
complex challenge due to its numerous applications. 
Therefore, three main user profiles have been created to 
address this issue:  
 

• Citizens: individuals, neighborhood councils, 
students, NGOs, foundations, etc. 

• Companies: acoustics consultants, technology 
developers, consultants in other engineering fields, 
etc. 
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• Data analysts: researchers, academic institutions, 
ministries, public services, policy makers, law 
enforcers, scholars, etc. 

 
We have defined a protocol for interacting with the FuSA 
system for each type of user. Regardless of the user type, 
the maximum audio recording length that can be uploaded 
is 1 minute per file. 

3.1 Case 1: Citizen 

Example: "I want to send acoustic information through my 
computer or phone to raise awareness about the acoustic 
problems in my sound environment." 

The first use case corresponds to the ordinary citizen’s 
ability to identify sounds of different natures. The user can 
upload an audio file to the FuSA system through an 
interactive web interface (FuSA Public)1. It is compatible 
with various devices such as computers or smartphones, 
being able to recognize GPS location, make recordings 
directly from the platform, listen to audio files to be 
uploaded, and indicate relevant parameters such as the date 
and time of recording, latitude, and longitude, etc. 
Furthermore, the user can specify sound sources previously 
detected in the file through a drop-down menu with 
different boxes, which show the specific taxonomy of the 
FuSA system. Once loaded, the FuSA system delivers a 
window indicating the probability of confidence in 
recognition of the sound sources existing in the analyzed 
audio file. 

3.2 Case 2: Specialized company 

Example: "I want to use artificial intelligence models to 
identify existing sound sources in audio data and records 
coming from my company's sensors." 
  
Unlike the citizen case, companies can establish direct 
communication with the FuSA system to upload and 
consult audio files, replacing the graphical interface with an 
API (FuSA API)2 that can be used through instructions 
called by commands configurable with any programming 
language. Through a terminal, a company can upload an 
audio file indicating relevant information such as format, 
location path, and specific characteristics related to the 
recognition models. Currently, the FuSA system has tested 
several models (PANN – SED - CRNN) and recognition 
schemes (PSED - TAG), uploaded directly to the project 
————————— 

1 https://public.labacam.org                    
2 https://api.labacam.org 

server and accessible through the API. The response of the 
FuSA system corresponds to the prediction of each of the 
sources, the confidence probability, and their start and end 
times. 

3.3 Case 3: Data analyst 

Example: "I want to download a report from data uploaded 
to the FuSA system to analyze an environmental acoustics 
problem in a specific period and geographic location." 
 
The final application case of the FuSA system involves a 
user with a researcher or data analyst profile whose interest 
is to explore audio data sets generated by acoustic sensors 
in a specific period and location. The user may draw 
conclusions about the acoustic behavior of the sound 
environment studied and generate relevant inputs such as 
noise maps, sound quality maps, environmental prevention 
and decontamination plans, welfare indicators, 
environmental education methodologies, etc.  
After defining relevant parameters such as start and end 
dates of the period to be studied, latitude and longitude of 
the sensor used, and expected area of application, the FuSA 
system transforms the analyzed audio dataset into a CSV 
spreadsheet containing several indicators associated with 
the measurements, such as sound levels, probability of the 
presence of sound sources of interest, etc.   
This last function of the system is only available upon 
request3, given the specificity of the procedures to be 
assigned and the complexity of each potential application. 
 
An example of the FuSA application has been presented in 
[14] for environmental noise analysis. Cities currently use 
24-h noise measuring stations to monitor the noise levels in 
urban areas. The station audio recordings are essential for 
assessing source compliance with noise regulations in a 
specific city area when the noise exceed the permitted 
levels at sensitive receivers. However, the process is quite 
challenging because trained experts must examine a large 
amount of data by listening to each audio file individually. 
Additionally, external sources like animals and weather 
might have surpassed the allowed limits and could be 
unrelated to the primary noise source under monitoring. 
This fact leads to practical difficulty when enforcing noise 
regulations.  
In this scenario, the stations can be the origin of the audio 
files fed into the FuSA system. Consequently, the FuSA 
system can deliver a prediction matrix reporting the 

————————— 
3 https://www.acusticauach.cl/fusa/ 
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presence of noise sources contributing to environmental 
noise pollution. An example of such a prediction matrix is 
shown in Fig. 5. The vertical axis displays the class 
probabilities for each 5-second segment of the 1-minute 
recording, whereas the horizontal axis shows the time. On 
the vertical axis, the probabilities sum up to one. The 
likelihood is higher when the color is darker. This outcome 
helps experts to promptly evaluate the acoustic 
environment's dynamics by identifying its most prominent 
sound events. 
 

 

Figure 5. Prediction matrix for a recording made by 
a noise measuring station. Trained experts  confirmed 
that this audio file corresponded to construction-
related noise [14].  
 
The results obtained using the machine learning tools 
developed in the FuSA project applying the current Chilean 
regulation on environmental noise revealed that the number 
of audio files that required expert analysis was reduced by 
97%. 

4. CONCLUSIONS 

In this work, the main characteristics of a machine learning-
based system, FuSA, were presented. The system 
automatically recognizes sound sources in audio files 
recorded in the urban environment to assist their analysis. In 
addition, some examples of users that could benefit from 
FuSA have been presented. So far, the results obtained by 
FuSA are pretty promising. However, some issues still need 
to be addressed, which are related to the robustness of the 
system and the own concerns associated with using 
artificial intelligence. These include data traceability to 
ensure no risks of data tampering and privacy. The latter is 
particularly important when processing speech-related 
sounds (human conversations), which may compromise 

people’s privacy. It is expected that the FuSA system will 
assist in enforcing and monitoring strictly regulated 
environmental noise sources at sensitive locations to reduce 
noise pollution. 
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