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ABSTRACT

This talk describes analytical, numerical, and experimen-
tal studies on an acoustic temporal metagrating. The con-
cept of a space metagrating – a metamaterial whose res-
onating units are smoothly varied in space - has been long
studied and its features are now well-established. A spa-
tial variation of resonances leads to effects such as rain-
bow trapping and spatial signal compression, which are
related to a gradual spatial wavenumber variation occur-
ring at fixed temporal frequencies. We introduce the tem-
poral analogue of such gratings and explore the resulting
wave phenomena emerging by virtue of time modulation.
The implementation, based on an acoustic waveguide en-
dowed with tunable Helmholtz resonators, leverages the
synergistic interplay between local resonance and time
modulation, and offers exquisite control of the underly-
ing dispersion properties. Numerical simulations and ex-
perimental studies unveil a few functionalities inherently
present in such a system when the properties of the res-
onators are gradually varied over time. In analogy with
space metagratings, we demonstrate frequency conver-
sion, and the temporal rainbow effect, which are suitable
to produce fast-and-compressed or slow-and-dilated ver-
sions of impinging temporal signals. The framework pre-
sented herein may open new avenues in the context of
time-varying phononics, with applications to communica-
tion, sound isolation, and energy conversion.
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1. INTRODUCTION

The metamaterials research has investigated intriguing
phenomena to functionally control wave propagation
within different physical domains. Various implementa-
tions in optical, elastic, and acoustic systems showcase
examples produced by periodic tessellations of Bragg-
scattering or locally-resonant units, which define different
bandgap formation mechanisms responsible for the ensu-
ing wave propagation features [1]. A number of wave
manipulation strategies have emerged to provide attenu-
ation [2], localization [3], and mode-conversion [4] ca-
pabilities in acoustics, which are of particular relevance
for sound and vibration isolation purposes. Other config-
urations rely on the careful manipulation of spatial sym-
metries in the creation of back-scattering immune topo-
logical waveguides [5], including elastic/acoustic analogs
to the quantum spin Hall (QSH) [6] and quantum valley
Hall (QVH) [7] effects, for example. Another line of work
takes advantage of metamaterials with gradually varying
units, which are known to support slow waves [8] pro-
duced by way of a gradual decrease of the wave’s speed
in space, and which may also be useful for practical appli-
cations such as energy harvesting [9] and enhanced sens-
ing [10]. All these examples are induced by a modulation
of the underlying media in space. However, wave prop-
agation in spatially periodic or spatially varying systems
is constrained by non-tuneable dispersion and frequency-
invariant characteristics, which dictate severe limitations
on the achievable dynamics. Time-modulated metamateri-
als are excellent candidates to overcome these limitations
and broaden the wave control opportunities in the context
of metamaterial-based waveguiding. For instance, nonre-
ciprocal wave propagation [11], temporal pumping [12],
and temporal waveguiding [13] are behaviors that cannot
be met by solely linear time-invariant interactions. In this
context, we study wave propagation in time-modulated
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acoustic metamaterials in light of the adiabatic theorem.
Our analysis is inspired by previous studies on adiabatic
transformations of standing modes [14], and on adiabatic
wave steering in spring-mass lattices [15]. Here, we ex-
plore an acoustic waveguide endowed with Helmholtz res-
onators, where the cross-section of the neck is modulated
in time. We show that an incident wave packet propa-
gating through the time-varying waveguide undergoes a
wavenumber-invariant frequency conversion that follows
the time evolution of the dispersion bands. The role of
the modulation velocity is explored through the adiabatic
theorem. We show that quick (non-adiabatic) modulation
protocols generate energy leaks from the incident wave
packet toward other wave modes that populate the waveg-
uide. We then compute a limiting condition for the mod-
ulation velocity in order to achieve frequency conversion
through a scattering-free process and delineate the transi-
tion between adiabatic and non-adiabatic processes. Sup-
ported by the derived adiabatic conditions, our numerical
results reveal possibilities for frequency conversion and
temporal signal compression or decompression, which
may define novel functionalities of metamaterial waveg-
uides enabled by smooth temporal modulations.

Figure 1. Schematic of the waveguide endowed with
Helmholtz resonators, along with a zoomed view of
the unit cell. The neck cross-section area Ar, high-
lighted in red, is modulated in time, while the other
parameters are kept constant.

2. ACOUSTIC WAVEGUIDES WITH
TIME-VARYING RESONATORS: MODELING

AND SOLUTION METHODS

In this section, we describe the modeling of the one-
dimensional (1D) acoustic waveguide endowed with time-

varying Helmholtz resonators. We first derive the equa-
tions of motion of the coupled system, followed by a ho-
mogenization in the long-wavelength limit which allows
for analytical expressions of the dispersion relations in
the absence of time modulation. Finally, we describe
the adiabatic conditions for transformations induced by
slow time modulation of the resonators’ properties, which
delineates the transition between frequency conversion
with and without energy scattering toward undesired wave
modes.

2.1 Equations of motion

We consider a 1D acoustic waveguide of constant cross-
section area A, featuring a period array of Helmholtz res-
onators of volume V , spaced by a distance a (Fig. 1).
The resonators have a neck length l and neck area Ar(t),
the latter assumed to be mechanically varied in time. The
wave equation for the acoustic waveguide is expressed
as [16]:
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where p = p (x, t) is the pressure field along the pipe,
c is the speed of sound, and G(x, t) is the apparent rate
of input mass per unit volume associated with the res-
onators. We assume a lumped-parameter model for the
resonators, whose only degree of freedom  (t) is the out-
ward fluid displacement of the neck, which is constant
along the cross-sectional area Ar. Under this approxi-
mation, the resonators are tuned to a frequency !r(t) =
c

p
Ar(t)/V l0 which also varies in time, with l

0 = l+1.7r
being the effective neck length of a flanged resonator
whose cylindrical neck has a radius r [16]. The apparent
input mass rate provided by a single resonator is given by
g = ⇢Ar(t)@ /@t, where ⇢ is the air density. Therefore,
the expression for the total rate per unit volume account-
ing for a series of N resonators is expressed as:

G(x, t) =
NX
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where �(x�xj) is the delta function that accounts for the
assumed point-wise action of the jth resonator placed at
xj . Substitution of 3 into 1 yields the equations of motion

5190



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

of the waveguide coupled with those of the resonators:
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where m = ⇢Arl
0 and k = ⇢c

2
A

2
r/V are the effective

mass and stiffness parameters of the resonators [16].

2.2 Dispersion calculation in the subwavelength
regime

In order to investigate wave motion in the considered sys-
tem and carry out analytical derivations, we now consider
the homogenized version of Eq. 3, whereby the resonators
are continuously distributed through the pipe:
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Here, both p (x, t) and  (x, t) are continuous functions
of space and time. This approximation is accurate in the
subwavelength regime, i.e. when the lattice size is much
smaller than the wavelength (a << �), and therefore
there is a sufficiently dense distribution of resonators com-
pared to the wavelength at the operating frequency. Equa-
tion 4 is generally dependent upon the instantaneous value
Ar(t), and the rates @Ar/@t and @m/@t. We first evaluate
the dispersion in the time-invariant regime, i.e. assuming
@Ar/@t = 0 and @m/@t = 0, with the area Ar considered
as a free parameter. The obtained solutions form the basis
for the adiabatic expansion under smooth temporal mod-
ulations derived in the next section. Therefore, we seek
a plane wave solution of the form p (x, t) = p0ei(x�!t)

and  (x, t) =  0ei(x�!t), where ! and  are respec-
tively angular frequency and wavenumber. Substitution
into Eq. 4 yields the following dispersion relation:

 = ±!
c

vuuut
1 +

µ

1� !
2

!2
r

(5)

where µ = V/aA is the volume ratio, i.e. the ratio be-
tween the volume enclosed in the resonator’s chamber and
the volume of the unit cell’s pipe segment.

The dispersion relation ! () is illustrated in Fig. 2
for two distinct conditions of Ar, corresponding to the ini-
tial and final modulation values A(i)

r = 10�5mm2 (solid
line) and A

(f)
r = 5 · 10�5mm2 (dotted line) employed

in the numerical part of the paper. Other relevant pa-
rameters of the resonator are a = 16 mm l = 4 mm,
and r = 8 mm. In the figure, dimensionless frequen-
cies ⌦ = !a/⇡c highlight the subwavelength operational
regime (⌦ < 0.5). Only two dispersion branches with
positive frequencies ⌦1 and ⌦2 are shown in the figure,
which define waves propagating to the right. The dis-
persion is symmetric about the wavenumber axis, with
the two leftward propagating solutions ⌦�2 = �⌦2 and
⌦�1 = �⌦1 not shown in the figure for ease of visual-
ization. The presence of the Helmholtz resonators breaks
the typical linear dispersion curve of the pipe into two
dispersion bands separated by a bandgap, whose bounds
can be easily extracted from the analytical solutions. The
lower bound !l = !r takes the wavenumber  to in-
finity in Eq. 6, while the upper bound is estimated as
!u = !r

p
1 + µ. We observe that the relative gap width

�!/!r = (!u � !l)/!r =
p
1 + µ � 1 is determined

solely by the resonator volume ratio µ, which plays a
similar role to the mass ratio of mechanical resonators
[17]. The examples in Fig. 2 employ a fixed volume ra-
tio of µ = 0.66, and normalized tuning frequencies of
⌦r = 0.127 and ⌦r = 0.23 induced by the initial A(i)

r

and final A(f)
r modulation values, respectively (note that

the neck area does not influence the volume ratio µ). The
validity of the analysis in the subwavelength regime is
confirmed by comparison with numerical simulations in
Sec. 3 that consider Eq. 3 without the subwavelength ap-
proximation.

While here the area Ar (t) is treated as a free pa-
rameter, its temporal variation modifies the dispersion
properties of the pipe during wave propagation, produc-
ing a transformation that preserves the wavenumber con-
tent while promoting conversions of the frequency con-
tent across the modulation [18]. We seek an adiabatic
transformation represented with the black vertical arrow,
whereby the energy initially injected in ⌦(i)

1 (⇤) follows
the time evolution of the underlying dispersion until the
value Ar (t) reaches A

(f)
r , without triggering any energy

conversion to other wave modes. In contrast, nonadiabatic
transformations triggered by fast modulation protocols in-
duce energy scattering to the neighboring wave modes that
populate the dispersion at different frequencies ⌦j (⇤).
In the following, we characterize these transformations in
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the light of the adiabatic theorem, which allows us to de-
lineate the transition between waveguiding with and with-
out scattering in time-varying acoustics.

Figure 2. Dispersion relation before (solid line) and
after (dashed line) time-modulation. The gray boxes
highlight the corresponding variation of the gap lim-
its. The energy, provided with a central frequency ⌦i

1

and wavenumber ⇤, undergoes an adiabatic trans-
formation that follows the vertical arrow and is ac-
companied by frequency conversion from ⌦i

1 to ⌦f
1 .

In contrast, nonadiabatic processes involve also other
dispersion branches.

2.3 Adiabatic transformations for slow temporal
modulations

To investigate the time-varying dynamics caused by slow
temporal variations of the area Ar, Eq. 4 is written
in a first-order differential form by imposing only the
wavenumber :

|ẑ ,ti = H (, Ar (t)) |ẑi (6)

where |ẑi = [@p̂@t ,
@ ̂
@t , p̂,  ̂]

T , also , t denotes a temporal
derivative and H (, Ar (t)) is the time-dependent Hamil-
tonian matrix.

This first-order differential form resembles
Schrodinger’s equations for quantum states where
the adiabatic theorem is classically established (see for
example the book by [19]), and also employed in multiple
following studies due to its convenience in deriving

adiabatic conditions [20, 21]. The ansatz |ẑi = |ẑ0i ei!t
yields a time-dependent eigenvalue problem of the form
H (, Ar (t)) |ẑRj i = i!j|ẑRj i, whose instantaneous
solutions define the time-varying dispersion branches
!j(, t) and associated eigenvectors |ẑiR (, t). In the
case of smooth modulations produced by small rates of
change of the area Ar(t), the instantaneous dispersion
solutions define the four time-dependent waves that can
propagate in the pipe, and form a natural basis for the
expansion of the total solution:

|ẑi(t) =
X

j

cj(t)|ẑRj i(t)ei✓j , j = [�2,�1, 1, 2],

(7)
where ✓j =

R t
0 !j (⌧) d⌧ is the geometric phase, which re-

places the !t term commonly present in time-independent
solutions, and cj(t) are the time-dependent participation
factors for each wave mode. Plugging the solution into Eq.
6 and performing a series of algebraic manipulations [15]
yields the following differential equation that describes
the time evolution of the participation factor cr(t):

cr ,t = �hẑLr |ẑRr, ti cr �
X

j 6=r

hẑLr |H ,t|ẑRj i
i (!j � !r)

cje
i(✓j�✓r),

(8)
where hzLr |(t) is the left eigenvector. For a given initial
condition defined by a combination of propagating modes,
these equations can be solved to obtain the time evolution
of each participation factor cr(t). While that is not always
convenient, the equations are particularly useful to derive
the conditions for adiabatic transformations in which the
evolution occurs through an isolated mode. This leads to
the following condition [22]:

�����
hẑLj |H ,t| ẑRr i
(!h � !r)

2

����� << 1. (9)

The condition in Eq. 9 is employed to analyze the
coupling between the imposed wave mode and the other
modes which may be involved in the solution. The condi-
tion must be evaluated for a given pair of wave modes and
a certain imposed wavenumber. To exemplify, we con-
sider the imposed wavenumber k⇤ and solution ⌦1 marked
in Fig. 2.

3. NUMERICAL RESULTS

In this section, we present a few case studies to eluci-
date the role of time modulation in the considered acous-
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tic metamaterials, with emphasis on frequency conver-
sion, mode conversion, and the derived adiabatic condi-
tions. The results are obtained through numerical simula-
tions performed through a finite difference time domain
(FDTD) algorithm, where the partial derivatives in Eq.
3 are discretized through a central difference approxima-
tion. For simplicity, we employ a piecewise linear varia-
tion of the neck cross-section area:

Ar (t) =

8
>>><

>>>:

A
(i)
r t < ti

A
(i)
r + vm (t� ti) ti < t < tf

A
(f)
r t > tf

(10)

where ti and tf are the start and finish time instants for the
modulation, and vm is the constant modulation velocity.
In the simulations, a sinusoidal wave packet with n = 30
periods is imposed through a prescribed velocity to the left
end of the waveguide. The excitation occurs during the
time-invariant window t < ti, establishing a propagating
wave packet with a desired frequency/wavenumber spec-
tral content according to the dispersion at the initial state
Ar = A

(i)
r . We hereafter present the following represen-

tative examples: (i) a fast (nonadiabatic) modulation with
vm = v

(1)
m , which allows increasing the frequency con-

tent of an impinging wave packet while compressing its
time envelope. Such a nonadiabatic process is accompa-
nied by energy leakage toward the other states supported
by the waveguide, (ii) a slow (adiabatic) modulation with
vm = v

(2)
m able to perform frequency up-conversion and

compression of an impinging wave packet, but without
any energy leakage toward other wave modes, and (iii)
an adiabatic frequency down-conversion with vm = v

(2)
m ,

which is accompanied by dilation of the impinging wave
packet, i.e., the process opposite to (ii).

The time history relative to example (i) is displayed
in Fig. 3(a). The excitation is provided with a central
frequency ⌦(i)

1 = ⌦1(⇤) = 0.109, targeting the lower
dispersion branch of Fig. 2(a) in the nearly-flat region
close to the resonance, which exhibits limited group ve-
locity and highly dispersive characteristics. This region
is chosen as it exhibits a large change with respect to the
final dispersion branch (dashed lines in Fig. 2(a)) for the
imposed wavenumber. In this example, the modulation
takes place in a nonadiabatic manner due to the high mod-
ulation speed v

(1)
m , and the energy content is leaked to

other available states supported by the waveguide. Indeed,
wave motion in Fig. 3(a) exhibits sharp changes after time

modulation, with distinct wave packets of different ampli-
tude and speeds emerging. To better elucidate this con-
cept, we report the wave packets before (black curves)
and after (red curves) time modulation. Fig. 3(b) illus-
trates the spatial envelope of the wave and its wavenum-
ber content, evaluated at fixed time instants (marked with
dots in Fig. 3(a)). We note that, as expected of temporal
modulations and discontinuities [13], the wavelength and
associated wavenumber content are preserved throughout
the process. In contrast, the corresponding frequency con-
tent undergoes transformations, as illustrated in Fig. 3(c)
which displays the time and frequency representation of
the wave packet for fixed spatial positions before and after
time modulation. We note that the main frequency com-
ponent of the wave packet undergoes a frequency shift
toward a higher frequency ⌦(f)

1 , and its spectral width
broadens after time modulation, which corresponds to a
compression of the time-domain signal. An additional fre-
quency component centered at ⌦(f)

2 is also noted after the
time modulation due to the scattering caused by the non-
adiabatic process.

To better illustrate the frequency transformations, we
present a frequency spectrogram in Fig. 3(d), which is
evaluated by windowing the pressure field p (x, t) with a
moving Gaussian function G (t) = e�(t�t0)

2/2c20 . Here,
c0 = 0.06Tf determines the width of the Gaussian and t0

is its central value, which is smoothly varied to produce
the spectrogram within the interval t0 2 [0, tf ]. For ease
of visualization, the Fourier-transformed pressure field
p̂ (, f, t0) is further processed by taking the RMS value
along , which eliminates one dimension. The resulting
spectrogram |p̂ (f, t0)| in Fig. 3(d) is overlaid to black
curves that represent the wave modes ⌦j(⇤) supported
by the waveguide at the incident wavenumber ⇤. As ex-
pected, the energy content is initially concentrated in the
branch ⌦(i)

1 , and its mainly converted through the evolu-
tion of that branch to ⌦(f)

1 . Due to the non-adiabatic trans-
formation, other wave modes are present after modulation:
the second branch ⌦(f)

2 significantly contributes to the
wave motion, and minor contributions are also observed
for ⌦(f)

�1 and ⌦(f)
�2 , generating back-propagating waves.

Note that around t = 30 ms the back-propagating waves
are reflected off the left boundary and converted back into
the right propagating modes ⌦1 and ⌦2. Finally, Figs. 3(e-
f) display the 2D Fourier Transforms of the pressure field
before and after time modulation, overlaid to the numeri-
cal dispersion curves for the initial and final states. These
diagrams confirm that frequency conversion follows the
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underlying dispersion, with energy initially concentrated
in the excited first branch, and afterward leaked also to the
second branch. Due to the wavenumber-preserving trans-
formation, the output frequency content of the first branch
has a wider spectrum when compared to the input, which
explains the time compression of that portion of the signal
evidenced in Fig. 3(c). In this case, the frequency shift and
signal compression are observable but contaminated with
energy from other wave modes due to the nonadiabatic-
induced scattering.

Figure 3. (A) Wavefield p (x, t) obtained through
a nonadiabatic modulation velocity v

(1)
m , which is

graphically represented in the waterfall plot. In the
figure, x1, x2, t1, and t2 are used to mark the space
and time coordinates used to produce the plots in
Figs. (B) and (C). (B) Pressure field and correspond-
ing wavenumber content evaluated at constant time
instants t1 and t2 before (black curve) and after (red
curve) time modulation. The wavenumber is pre-
served across the time discontinuity. (C) Pressure
field and corresponding frequency spectrum evalu-
ated at prescribed coordinates x1 and x2. A fre-
quency conversion mechanism takes place, whereby
the impinging energy is split over multiple and dis-
tinct frequencies. (D) Frequency spectrogram eval-
uated over time. The colored contours represent the
energy that is injected to excite ⌦1 and is frequency-
converted into different wavemodes ⌦j . The black
curves represent the expected evolution of the states
in time. (E-F) Comparison between dispersion rela-
tion and 2D FFTs of the wavefield (E) before and (F)
after time modulation.

A cleaner frequency conversion and signal compres-
sion is demonstrated in the second example (ii) corre-
sponding to a modulation velocity v

(2)
m < v

(1)
m , which

triggers an adiabatic evolution of the state dictated by
the underlying conversion mechanism and described by
the black vertical arrow in Fig 2(a). As such, the time
history in Fig. 4(a) evidences a single wave packet that
transforms with minimal scattering toward other states.
This is confirmed by the space snapshot and time evolu-
tion of the wave packets reported in Figs. 4(b-c), along
with corresponding wavenumber and frequency represen-
tations. In absence of further wave modes, Fig. 4(b) illus-
trates the same wavenumber conservation as in example
(i), while 4(c) displays a frequency conversion and com-
pression mechanisms of the impinging wave packet. In
addition, the spectrogram in Fig. 4(d) confirms the evolu-
tion through the single branch corresponding to ⌦1, while
the dispersion plots in Figs. 4(e-f) confirm that the spec-
tral content obeys the predicted behavior of the initial and
final states, with no scattering to other wave modes.

The time history relative to the third example (iii) is
shown in Fig. 5(a), where now the conversion process is
tailored to frequency down-convert the impinging wave
and dilate it in time. Such a transformation again follows
the arrow in Fig. 2(a), but with a reversed direction. Here,
the impinging wave packet is provided with n = 10 pe-
riods and at a central frequency ⌦(i)

1 = ⌦1(⇤) = 0.145,
which corresponds to the final frequency ⌦(f)

1 of previ-
ous examples (i) and (ii). Time modulation is thus per-
formed by bending the dispersion curve and confining the
energy content, initially broadband, within a narrower fre-
quency region and with lower propagation velocity. As a
result, dilation of the impinging wave packet is observed
in Fig 5(c), while 5(b) describes the wavenumber preserv-
ing dynamics. Also here, the process with v

(2)
m < v

(1)
m is

considered adiabatic, since a minimal amount of energy is
scattered to the other wave modes, as shown in the spec-
trogram in Fig. 5(d), along with the reciprocal space rep-
resentation before (Fig. 5)(e) and after (Fig. 5(f)) time
modulation.

4. CONCLUSIONS

In this paper, we have explored the dynamics of acoustic
metamaterials endowed with time-varying Helmholtz res-
onators. When a sound wave propagates simultaneously
to a temporal modulation, the wave packet experiences a
frequency conversion dictated by the underlying disper-
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Figure 4. (A) Wavefield p (x, t) for an adiabatic
transformation driven by a sufficiently slow modula-
tion velocity v

(2)
m . (B) Pressure distribution in space

p (x) and corresponding wavenumber content p̂ ()
measured before (black curve) and after (red curve)
time modulation. (C) Pressure distribution in time
p (t) and frequency content p̂ (⌦) probed at constant
positions x1 and x2. The time domain signal ex-
hibits compression of the wavepacket, which is con-
sistent with a broader spectral content. (D) Corre-
sponding frequency spectrogram with superimposed
evolution of the underlying wave modes ⌦j . Due to
the adiabatic transformation, the energy content does
not leak toward the neighboring states and remains
located in correspondence of ⌦1. (E-F) Compari-
son between dispersion relation and 2D FFTs of the
wavefield (E) before and (F) after time modulation.

sion, which may result in signal compression or dilation.
If the speed of the modulation is fast, or nonadiabatic, the
time evolution of the wave packet can be accompanied by
energy scattering to other wave modes. In contrast, suffi-
ciently slow modulations can frequency transform the im-
pinging wave in an adiabatic manner and without any en-
ergy leak to the other dispersion branches. We have estab-
lished the limiting condition for the modulation speed to
distinguish between adiabatic and nonadiabatic processes.
The developed framework, illustrated through selected nu-
merical case studies, is generally applicable to a variety
of time-varying metamaterial systems. Therefore, the pre-
sented results may open new opportunities in time-varying
acoustics with application to signal processing, sound iso-
lation, and energy conversion. Future investigations will

Figure 5. (A) Wavefield p (x, t) for a transformation
capable of decompressing a wave packet. A suffi-
ciently slow modulation velocity v

(2)
m is herein em-

ployed to guarantee adiabaticity. (B) Pressure distri-
bution in space p (x) and corresponding wavenum-
ber content p̂ () measured before (black curve) and
after (red curve) time modulation. (C) Pressure dis-
tribution in time p (t) probed at constant positions x1
and x2, along with corresponding frequency content
p̂ (⌦). The time domain signal exhibits dilation of
the impinging wavepacket, which is consistent with a
narrower frequency content. (D) Corresponding fre-
quency spectrogram with superimposed evolution of
the underlying wave modes ⌦j . The energy content
is frequency down-converted and, due to adiabatic-
ity, does not leak toward the neighboring states. (E-
F) Comparison between dispersion relation and 2D
FFTs of the wavefield (E) before and (F) after time
modulation.

focus on experimental validation of the concepts herein
explored.

5. REFERENCES

[1] M. I. Hussein, M. J. Leamy, and M. Ruzzene, “Dy-
namics of phononic materials and structures: Histor-
ical origins, recent progress, and future outlook,” Ap-

plied Mechanics Reviews, vol. 66, no. 4, 2014.

[2] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. T. Chan,
and P. Sheng, “Locally resonant sonic materials,” sci-

ence, vol. 289, no. 5485, pp. 1734–1736, 2000.

5195



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

[3] G. Hu, L. Tang, J. Liang, C. Lan, and R. Das,
“Acoustic-elastic metamaterials and phononic crystals
for energy harvesting: A review,” Smart Materials and

Structures, vol. 30, no. 8, p. 085025, 2021.

[4] H.-W. Dong, S.-D. Zhao, M. Oudich, C. Shen,
C. Zhang, L. Cheng, Y.-S. Wang, and D. Fang, “Re-
flective metasurfaces with multiple elastic mode con-
versions for broadband underwater sound absorption,”
Physical Review Applied, vol. 17, no. 4, p. 044013,
2022.

[5] G. Ma, M. Xiao, and C. T. Chan, “Topological phases
in acoustic and mechanical systems,” Nature Reviews

Physics, vol. 1, no. 4, pp. 281–294, 2019.
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