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ABSTRACT* 

RMIT University discovered that the reverberation time 
measurement module of new commercial hardware and 
software was not as fully automated as it should have been. 
The author wrote Visual Basic for Applications software 
that fully automated the new commercial software. CSIRO 
discovered that the same commercial hardware and 
software sometimes produced reverberation times that were 
too long due to the software deciding that the decay had 
started before the sound was turned off. It was discovered 
that one of the reasons why this occurred was that the 
firmware random noise generator produced the same 
random noise each time it was started, which made decay 
curve averaging useless. The author was able to convince 
the commercial supplier to fix this problem. Another reason 
was that the software sometimes produced undefined levels 
and these undefined levels sometimes caused the software 
to think that the decay had started before the sound was 
turned off. The commercial supplier was unable to fix this 
problem. RMIT University has had problems when using 
linear averaging to measure reverberation time. These errors 
and inadequacies are some of the reasons why CSIRO has 
started the development of its own signal processing 
software which is described in this paper. 
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1. INTRODUCTION 

These days most acoustic signal processing is conducted 
using software and/or firmware, partly because much of the 
old analogue signal processing hardware has failed with the 
passage of time. While some laboratories write some of 
their own acoustic signal processing software, many 
laboratories use commercial acoustic signal processing 
software for which they do not have access to the source 
code. This means that they are using “black box” software 
and cannot be certain that the software is doing what they 
think that is doing. Also, they cannot correct any errors that 
they discover in the software, modify the behavior of the 
software or add new features to the software. The need to 
use commercial software is forced on some laboratories 
because some suppliers of acoustic signal processing 
software do not release the details of the interfaces to their 
front-end hardware in order to force laboratories to use the 
supplier’s acoustic signal processing software. CSIRO and 
RMIT University have discovered or become aware of 
several errors or inadequacies in commercial acoustic signal 
processing software. This is one of the reasons why the 
author has started to develop acoustic signal processing 
software for CSIRO for one commercial supplier’s 
acoustical front-end hardware. He has also produced 
versions of this software which use soundcards as the front-
end input. The main use of the soundcard version of the 
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software is to interface to professional audio external USB 
soundcards. 

2. FULL AUTOMATION OF COMMERCIAL 
REVERBERATION TIME MEASURING 

SOFTWARE 

When RMIT University obtained new commercial acoustic 
signal processing hardware and software in 2004, they 
discovered that its reverberation time measurement module 
was not as fully automated as the previous firmware that 
they had been using previously. It was necessary to 
manually rename the result of each measurement and 
manually move each measurement result to a special 
location. Fortunately, the commercial software came with 
Microsoft Visual Basic for Applications (VBA). The author 
wrote a VBA macro which fully automated the 
reverberation time measurement process and enabled the 
reverberation time measurements results to be output as a 
Comma Separated Values (CSV) file or as a Microsoft 
Excel Spreadsheet file with a single button click. 

3. GENERATION OF THE SAME RANDOM NOISE 
SIGNAL EACH TIME THE GENERATOR WAS 

STARTED 

CSIRO discovered that its commercial acoustic signal 
processing software intermittently produced reverberation 
times that were too long. Further investigation showed that 
this was due to the commercial software deciding that the 
sound decay had started before the steady state sound had 
been turned off. Initially, it was not clear why this was 
happening. Eventually, it was discovered that there were 
two reasons for this behavior. The first reason was because 
the random noise generator was incorrectly producing the 
same random noise signal each time that it was started. This 
meant that the ensemble averaging of the decay curves that 
CSIRO conducted was not reducing the steady state ripple 
of the decay curve. This steady state sound ripple was 
sometimes large enough to convince the software that the 
sound decay had started before the sound was turned off. 
This occurred at low frequencies because the commercial 
software, like most software, used the same averaging time 
for all constant percentage bandpass filters. This averaging 
time had to be short enough to correctly measure the shorter 
reverberation times at high frequencies. The ensemble 
variance of the random noise sound pressure level is 
proportional to the inverse of the product of the statistical 
bandwidth of the bandpass filter (which is proportional to 

frequency) and the averaging time. Hence the steady state 
sound level ripple is greater at low frequencies. 
The random noise was generated by the firmware in the 
hardware front-end. It was obvious that the reason for the 
same random noise signal, each time the random noise 
generator was started, was that the firmware was using the 
same starting seed for generating the random noise. 
Random noise generators usually use a different seed each 
time that they are started. This seed is usually obtained from 
the time outputted by a real time clock. 
The author contacted the commercial equipment supplier, 
and they upgraded their firmware in their current range of 
measuring equipment. They were not going to upgrade the 
firmware in their previous range of measuring equipment 
because it was close to the end of its ten-year maintenance 
period after being discontinued. The author contacted them 
again and pointed out how serious the error was because it 
made ensemble averaging useless. The author also pointed 
out that international standards would have to be changed to 
include a warning about this fault. The commercial supplier 
then agreed to upgrade the firmware in their previous range 
of measuring equipment. 

4. THE OCCURRENCE AND THE EFFECT OF 
“UNDEFINED” LEVELS 

Unfortunately, even after the same random noise signal 
error was corrected by the firmware upgrade, reverberation 
times that were too long still intermittently occurred. It 
turned out that this was due to the occurrence of 
“undefined” levels in all frequency bands for a sequence of 
successive times. This was difficult to detect because the 
commercial software does not warn the user when 
undefined levels occur. The commercial software ensemble 
averages decay curves before calculating the reverberation 
time using the ensemble averaged decay curve. When 
“undefined” levels occur during the steady state sound 
period, the ensemble average decay curve produced by the 
commercial software surprisingly gradually increases above 
its expected steady state level before suddenly falling back 
to its expected steady state level when the “undefined” 
values stop occurring. It is this sudden fall that sometimes 
causes the commercial software to decide that the sound 
decay has started before the sound is turned off. CSIRO 
reported this fault to the commercial equipment supplier 
and supplied them with the configuration of their software 
that CSIRO was using. Unfortunately, the commercial 
equipment supplier was unable to reproduce this fault and it 
remains unfixed. CSIRO was surprised that the commercial 
equipment supplier was unable to tell them the source of the 
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“undefined” levels, even if they could not tell CSIRO why 
the “undefined” levels were occurring. 

5. PROBLEM WITH SHORT TERM LINEAR 
AVERAGING WHEN MEASURING VERY SHORT 

REVERBERATIN TIMES 

 
RMIT University had problems when using commercial 
software with short linear averages to measure very short 
reverberation times in a very small reverberation room 
(“Alpha Cabin”) with volume of 2.89 m2. The decay curves 
had a very large ripple and the time intervals between 
successive linear integrals were surprisingly not uniform. 
This problem was only overcome by using exponential 
averaging, which is not desirable because if the exponential 
averaging time is not chosen correctly, exponential 
averaging can bias the measured decay rate. It seems that 
the commercial equipment supplier prefers exponential 
averaging except for long term Leq measurements. 

6. OTHER PROBLEMS 

In a European round robin on sound absorption coefficient 
measurement conducted by ISO/TC 43/SC 2/WG 35, a 
highly respected standards laboratory obtained sound 
absorption coefficients that were clearly too low. After 
investigation, they concluded that this was due to the use of 
new “black box” hardware and software. 
The author tests the performance of reverberation time 
measurement software by using it to measure the 
reverberation time of fast exponential averaging (time 
constant equals 1/8 s and averaging time equals ¼ s). The 
measured reverberation time should be approximately 1.73 
s. In the early 1990’s, the firmware in one piece of 
commercial equipment produced the wrong reverberation 
tine and non-linear decibel versus time decay curves. The 
firmware in another piece of commercial equipment 
produced the correct reverberation time, but decibel versus 
time decay curves that were linear except at the bottom end 
where they curved down to the bottom of the display range. 
This appeared to be an attempt to hide the background noise 
of the device. 

7. SIGNAL PROCESSING SOFTWARE 
DEVELOPMENT WITH PYTHON 

In 2020, a major commercial supplier of acoustical 
measuring equipment and software released an Open 
Applications Programming Interface (Open API) for their 

current range of acoustical measurement front-end 
hardware. Because of all the issues mentioned above 
CSIRO purchased a license for this Open API. Later, the 
commercial supplier made the license for this interface 
available for free when they released another firmware 
update for their front-ends. CSIRO asked for their money 
back, but were refused. However, the fact that the license 
was free meant that CSIRO did not have to purchase 
another Open API license when they obtained another 
front-end module. 
The commercial supplier had made available the source 
code for a number of example programs using the Open 
API in a number of different software languages. However, 
the only example programs that performed any signal 
processing were written in Python. Hence the author’s 
initial software development was written in Python. Python 
is available for free and its NumPy and SciPy modules have 
extensive signal processing capability, including Fast 
Fourier Transforms (FFTs) and digital filtering design and 
implementation. 
The two Python examples calculated and displayed a single 
FFT spectrum. Thus, the author’s first Python program 
continuously calculated, displayed and stored FFT spectra 
in real time. Only the level in decibels is displayed, but both 
the level in decibels and the phase in degrees are stored and 
can be saved as a CSV file which can be viewed as a text 
file and read into Microsoft Excel for further processing. 
Both the level in decibels and the phase in degrees are 
needed to calculate the individual cross spectra in Excel. 
These individual cross spectra can then be averaged over 
the repeated FFTs. If the front-end has only two input 
channels, it would be appropriate to calculate the single 
cross spectrum in the program, but this not appropriate if 
the front end has more than two input channels because 
there are so many possible cross spectra that can be 
calculated. The program can be set to calculate a given 
number of FFTs and save the results to disk, or to run 
continuously until stopped by the user but only display the 
level in decibels. 
The program was then modified to calculate fractional 
octave band spectra using linear or exponential averaging. 
This version of the program was then extended to calculate 
reverberation time. 

8. THE CHANGE TO C# 

A problem with these two Python programs is that they 
could not run continuously in real time at the highest 
sampling rates and with the maximum number of channels 
even when parallel processing was used. Eventually it was 
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discovered that Python could not read the data in over the 
ethernet interface fast enough even when performing no 
data processing. The highest speed case was 24 bits per 
sample at 131072 samples per second per channel and six 
channels. At this stage the reluctant decision was made to 
change to C# which experiment showed could read the data 
in fast enough over the ethernet interface. The reason for 
this difference is that Python is an interpreted language 
although there is some pre-compilation, while C# is a 
compiled language. However, C# was run in debug mode in 
Microsoft’s Visual Studio which is like running an 
interpreted program. The Community version of 
Microsoft’s Visual Studio is free for non-commercial use. 
C# would run even faster as a stand-alone non-debug 
compilation. 
An upgrade to the firmware of the six-channel input front-
end, that the author was using, enabled each channel to use 
a separate ethernet port. This enabled each channel to be 
read and processed in a separate parallel thread. 
A problem with using C# is that, unlike Python, it does not 
come with modules that contain FFT routines or filtering 
design and implementation routines. It is necessary to use 
third party modules. Thus, the software uses FFTW which 
was developed at the Massachusetts Institute of 
Technology. FFTW is reportedly one of the fastest 
implementations of the Fast Fourier Transform and is 
reportedly used in the commercial MATLAB software 
package. However, it is written in C and thus it is necessary 
to use one of several C# wrappers. The author’s C# 
programs use the FFTW.NET C# wrapper. These programs 
use the NWAVES software package to design and 
implement the digital filters and to calculate the FFT 
window functions. 

9. SOUNDCARDS 

Having written these two programs, the author then decided 
to convert these programs for use with soundcards. The 
main reason for doing this was to be able to use 
professional external USB soundcards as front-ends to 
replace aging and failing analogue acoustic measuring and 
analyzing equipment. The author used the Audio Streaming 
Input Output (ASIO) soundcard software interface that is 
supported by most professional audio soundcards or one of 
several possible Microsoft Windows soundcard software 
interfaces. If a soundcard does not have an ASIO interface, 
it may be possible to use the ASIO4ALL software interface 
which tries to interface to one of the Microsoft Windows 
soundcard software interfaces. Because the ASIO software 
interface, the ASIO4ALL software interface, and the 

Microsoft Windows soundcard interfaces are written in C, 
the author used the NAUDIO package to interface to them. 
If the sound card has more than two input channels or more 
than two output channels, it is necessary to use the ASIO 
interface to use more than two input channels or two output 
channels. 
The author’s acoustic group at CSIRO has two professional 
external USB soundcards. One of these has eight analogue 
inputs and ten analogue outputs. The other has two 
analogue inputs and two analogue outputs. Both these 
devices can supply 48 V phantom power. It is possible to 
purchase 48 V phantom power preamplifiers for pre-
polarized measurement microphones, but it is also possible 
to purchase 48 V phantom power to Integrated Electronics 
Piezo-Electric (IEPE) adaptors. Because two of CSIRO’s 
commercial acoustical measurement front-ends support 
IEPE, CSIRO decided to purchase 48V phantom power to 
IEPE adaptors, IEPE half inch measurement microphone 
preamplifiers and half inch pre-polarized measurement 
microphones. CSIRO also has a commercial acoustical 
measurement external USB front-end. Upon opening, this 
device was found to consist of an IEPE input board and an 
external USB sound card board. This device came with six 
integrated quarter inch microphone preamplifiers and 
quarter inch pre-polarized measurement microphones. This 
device and the combination of the 48V phantom power to 
IEPE adaptors and the external USB professional audio 
soundcards can also be used with piezo electric 
accelerometers which have built in IEPE preamplifiers. 
Hence the IEPE approach gives maximum flexibility. For 
measurement microphones which require an external 
polarizing voltage, it is necessary to use an appropriate 
microphone preamplifier power supply or use one of the 
acoustic measurement front ends with 7 pin LEMO or Brüel 
and Kjær microphone preamplifier sockets. 
Professional audio external USB soundcards are not 
suitable for measuring absolute voltage levels because their 
peak input voltages are not calibrated, they have relatively 
low input impedances, and they have continuously variable 
uncalibrated input attenuators. But absolute voltage 
measurement is not required for most acoustical
measurements because the whole measurement system is 
usually calibrated by placing a sound level calibrator on 
each of the measurement microphones when absolute sound 
pressure measurements are required. A vibration calibrator 
can be used with accelerometers and geophones. For many 
acoustic and vibration measurements only measurements of 
the level differences are required. This is the case for 
airborne sound insulation measurements if the 
measurements are made in both directions or if the 
measurement chains are swapped between rooms. It is also 
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the case for reverberation time measurements and hence for 
diffuse sound absorption coefficient measurements. For two 
microphone impedance tube measurements, the two 
measurements are swapped during the calibration 
procedure, and again microphone calibration is not needed. 
Frequency response measurements also do not require 
absolute voltage measurements, because the measurements 
at two different frequencies only have to be relative, and 
usually both the input and output signal levels are 
measured. 
Professional audio external USB soundcards have to have 
good linearity in order to have low distortion and have to 
have low noise to avoid annoyance. They have fairly flat 
frequency responses from about 20 Hz up to their ani-
aliasing filters. Most current professional audio external 
USB soundcards are 24 bit per sample and support the 
following sampling frequencies: 44.1, 48, 88.2, 96, 176.4 
and 192 kHz. These frequencies appear to be very accurate. 
The phase and level matching between different input 
channels and between different output channels appears to 
be fairly good. 
One of the differences between the acoustic measurement 
front-ends that CSIRO has and the soundcards is that the 
acoustic measurement front-ends have large buffers and 
transfer the measured sample values in blocks that are 
always a positive integer power of 2. The soundcards have 
relatively small buffers because they are trying to obtain 
low latency and the number of samples that they transfer at 
a time is not necessary a positive integer power of 2. Thus, 
the author’s programs for the soundcards had to implement 
sufficient buffering and supply the data in blocks with a 
positive integer power of 2 number of samples for the 
signal processing. 
One of CSIRO’s acoustic measurement front-ends has four 
input channels and two output channels. The firmware in 
this device can produce a number of different types of 
output signals. The author’s software uses this capability to 
switch on and off random noise for interrupted random 
noise reverberation time measurements. However, CSIRO’s 
other acoustic measurement front-end only has six input 
channels. Thus, it is necessary to use an external random
noise generator for interrupted random noise reverberation 
time measurements. Hence the author implemented a USB 
connection to an Arduino board to turn on and off a relay 
controlling the random noise. He also implemented a USB 
connection to a General Purpose Interface Bus (GPIB) 
controller to switch on and off the random noise generator 
in a Norsonics NE830 real time analyzer. The acoustic 
front-end with the two output channels can also output 
arbitrary waveforms like a soundcard, but the author has not 
yet used this capability. For the sound cards, the author has 

implemented the output of pink random Gaussian noise, 
white random Gaussian noise, sine waves, square waves, 
sawtooth waves, swept sine waves and zero signal output 
(for turning off the output). 
Once the FFT and fractional octave filtering programs were 
converted to the two different soundcard interfaces, the 
author wrote a stepped sine program for measuring 
frequency responses for the two different soundcard 
interfaces. He will eventually adapt this program to work 
with the acoustic front-ends. 

10.  CONSOLE AND GRAPHICAL USER 
INTERFACES (GUI) 

The programs described in this paper were initially written 
as Microsoft Windows Console applications. The 
configuration is controlled by setting variables which are at 
the start of the program source code. Since the programs are 
fast enough that they can be run in debug mode in 
Microsoft Visual Studio which is a Graphical User Interface 
(GUI) Program, the program settings are actually changed 
in a GUI program, but the rest of the interaction with the 
program occurs in a Console window. 
The author is in the process of converting these Console 
programs to GUI programs. There are some issues involved 
with doing this. Microsoft Windows was initially developed 
when personal computers were only single threaded. This 
means that the Microsoft COM protocol which is used to 
communicate with the Microsoft Windows graphical 
components is not thread safe. But threads have to be used 
for parallel processing. This means that it is necessary to 
check whether the program is calling a Microsoft Windows 
graphical component from the same thread that it is running 
in. If this is not the case, it is necessary to call the graphical 
component via a function which is forced to run in the same 
thread as the graphical component. This forcing is 
necessary because functions normally run in the thread that 
they are called from. 
To use the Microsoft Windows graphing functions, it is 
necessary for both the Console and the GUI programs to 
use the .NET Framework rather than the more general .NET 
environment. 

11.  FRACTIONAL OCTAVE BANDPASS FILTERS 

It is possible to design analogue third order third octave 
Butterworth bandpass filters which satisfy the class 1 
requirements in the current international octave-band and 
fractional-octave-band filter standards [1-3]. This is not the 
case for digital third order third octave Butterworth 
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bandpass filters. The highest frequency filter in each octave 
band only satisfies the class 2 requirements in part of the 
frequency range below its centre frequency. There are two 
reasons for this. The North Americans pointed out many 
years ago that the frequency response limits in the current 
international standards are not well centred about 
Butterworth bandpass filter frequency responses. The 
second reason is that analogue bandpass filters tend to be 
symmetrical in the logarithmic frequency domain and 
digital bandpass filters tend to be symmetrical in the linear 
frequency domain. 
Digital third order elliptic bandpass filters can be designed 
to satisfy the current octave-band and fractional-octave-
band filter standards. However, the author chose to use 
digital fourth order Butterworth bandpass filters because the 
ratio of the 3 dB down or half power bandwidth to the 
standard noise or effective bandwidth of an arbitrary 
analogue Butterworth bandpass filter of any order can be 
calculated [4]. This ratio can be used to calculate the lower 
and upper 3 dB down or half power frequencies of the 
analogue Butterworth bandpass filter which has the noise or 
effective bandwidth required by the current standards. 
These two frequencies divided by the Nyquist frequency are 
needed as inputs to the software used to design the digital 
Butterworth bandpass filter. The author understands that 
this software usually works by designing an analogue 
Butterworth lowpass filter, converting this filter to an 
analogue Butterworth bandpass filter, and then converting 
this filter to a digital Butterworth bandpass filter. 
Some caution is needed here, because the equation for the 
ratio of the 3 dB down or half power bandwidth to the 
standard noise or effective bandwidth of an arbitrary 
analogue Butterworth bandpass filter of any order is strictly 
speaking only correct for the analogue Butterworth 
bandpass filter which is converted to the digital Butterworth 
bandpass filter. Secondly, the standard definition of the 
noise or effective bandwidth used to derive this ratio 
assumes that the exciting signal is white Gaussian random 
noise. Somewhat surprisingly, the current international 
standards use a nonstandard definition of the normalized 
noise or effective bandwidth which assumes that the
exciting signal is pink Gaussian random noise. This appears 
to be done so that measurements of the normalized noise or 
effective bandwidth can be made using a constant 
amplitude sine wave whose frequency varies exponentially 
with time and because a pink Gaussian random noise signal 
has a flat fractional octave spectrum. Numerical integrations 
to calculate the noise or effective bandwidth following the 
requirements of the current international standards of a 
fourth order Butterworth fractional octave bandpass filter 
designed following the method described above showed 

that the noise or effective bandwidth was less than the 
required by 0.039 dB for a 31.5 kHz octave filter and by 
0.010 dB for a 40 kHz third octave filter. These two decibel 
differences are less than one quarter of the magnitudes of 
the allowed decibel differences between the noise or 
effective bandwidth and the required value of ±0.4 dB for 
class 1 filters and ±0.6 dB for class 2 filters. In the 1970s, 
CSIRO purchased a General Radio third octave band real 
time analyzer. This consisted of a bank of parallel analogue 
third octave filters and a scanning digital voltmeter which 
sampled at an average sampling rate of about 50,000 
samples per second. Because it scanned the outputs of about 
50 filters, each filter was scanned at an average sampling 
rate of only about 1000 samples per second. Thus, many of 
the outputs of the higher frequency analogue filters were 
scanned below the Nyquist frequencies required for 
sampling their output signals. To try and avoid coherence 
between the output signals of the analogue filters and the 
sampling rate, the sampling rate was varied by a factor of 
about two over the selected linear integrating time. 
Although this approach worked well, in 1978 when the 
author visited the Danish Technical University, he 
discovered that they were unhappy with this solution. They 
used the General Radio bank of parallel analogue third 
octave filters, but had developed their own scanning digital 
voltmeter which scanned the third octave filters in each 
lower octave band at half the sampling rate used in the 
octave band immediately above. With this approach, they 
were able to sample all the filter outputs with a Nyquist 
frequency above the frequency range of each filter, but still 
have the same total sampling rate. 
The first Brüel and Kjær third octave band real time 
analyzer used a bank of parallel analogue third octave filters 
and a bank of parallel analogue root mean square voltmeters 
and exponential averaging devices whose output voltages 
were digitally sampled at a low sampling rate and displayed 
on a video screen. There was one analogue root mean 
square voltmeter and one exponential averaging device for 
each analogue third octave filter.  
When Brüel and Kjær developed their first digital third 
octave band real time analyser, they adopted a version of
the idea used by the Danish Technical University. In half of 
the signal processing time, all the outputs of the digital third 
octave bandpass filters in the top octave were calculated 
and the signal was low pass filtered and every second 
sample was passed for processing to the digital filters in the 
octave band immediately below the current octave band and 
further low pass filtering. This halved the Nyquist 
frequency and meant that the filtering for the filters in the 
next highest octave took only half the time of the top octave 
band, namely one quarter of the total signal processing 
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time. The next highest octave band then took only one eight 
of the total signal processing time, and so on. This meant 
that all the filters in all the octaves bands could be 
processed in real time in the total amount of the signal 
processing time that was available. The software developed 
by the author also uses this process to obtain the fastest 
signal processing speed that is possible. Another reason for 
using this process is that numerical instability can occur if 
the bandwidth of a digital bandpass filter is very small 
compared to the Nyquist frequency. This can occur if digital 
bandpass filters in a large number of octave bands are 
directly calculated using the unreduced original sampling 
rate because the bandwidth of a constant percentage band-
pass filter is proportional to its centre frequency. The low 
pass filter is a twelfth order Butterworth low-pass filter 
which is 0.1 dB down at the top edge frequency of the next 
highest octave band. This top edge frequency is of course 
equal to the bottom edge frequency of the current octave 
band for which signal processing is being conducted.  
The signal processing software developed by the author can 
conduct linear or exponential averaging. For reverberation 
time measurements it is desirable to be able to vary the 
averaging time as a function of the centre frequencies of the 
fractional octave filters. For exponential averaging it is 
possible to set a different averaging time for each fractional 
octave filter. However, because the number of fractional 
octave filters becomes large when the frequency range in 
octaves becomes large and the number of filters per octave 
is also large, the software currently uses a constant 
exponential averaging time for all filters in a particular 
octave band, but allows this constant exponential averaging 
time to be different for different octave bands. The initial 
linear averaging time is the same for all frequencies, but 
longer averaging times can be obtained by calculating the 
running average of the current and the last so many linear 
averages. Again, the number of averages combined to form 
a running average is currently the same for all fractional 
octave filters in a particular octave band but can be different 
for different octave bands. For statistical purposes, it is 
sometimes desirable to use statistically independent levels 
when calculating reverberation times. Thus, the software
enables the use of only every Nth running average when N 
linear averages have been averaged to form the running 
average. 

12.  FAST FOURIER TRANSFORMS (FFT) 

Most Fast Fourier Transform (FFT) software packages 
only return the complex amplitudes of the non-negative 
frequency spectrum lines because the complex amplitude 

of a negative frequency spectrum line of an FFT of real 
number values is equal to the complex conjugate of the 
complex amplitude of the corresponding positive 
frequency spectrum line. This means that it is necessary 
to multiply the complex amplitudes by 2. But it is then 

necessary to divide the complex amplitudes by 2  to 
convert them to root mean square values. This means 

that the nett effect is multiplication by 2 . These 
corrections are not needed for the zero-frequency 
spectrum line. It is then necessary to correct for the 
effects of the windowing function w(n) that has been 
used.by multiplying the complex amplitudes by the 
amplitude correction factor Aw, 
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where N is the number of samples whose FFT is being 
calculated. Effectively, the complex amplitudes are 
divided by the average value of the windowing function. 
However, conducting a reverse FFT of the spectrum of 
an FFT should produce the original samples. This is not 
the case unless both the FFT and the reverse FFT are 
divided by divisors whose product is equal to N, the 
number of original samples. Unfortunately, most FFT 
software packages divide the FFT results by 1 and the 
reverse FFT results by N. Exactly the opposite is needed 
for signal processing. This means that the complex 
amplitudes have to be multiplied by 
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The use of a windowing function increases the noise or 
effective bandwidth Be of a spectral line beyond the line 
spacing Δf = 1/(NΔt) of the centre frequencies of the 
spectral lines, where Δt is the time interval between 
samples. If random noise is being measured, the results 
can be made independent of the spectral line spacing and 
the window being used by dividing the moduli squared 
of the complex rms amplitudes of the spectral lines by 
the noise or effective bandwidth Be to obtain the spectral 
densities. 
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The software presents the mean square values or spectral 
densities as decibels in real time in the form of graphs. The 
values displayed in each set of graphs can be averages of a 
number of measurements if necessary, in order to reduce 
the computing load of redrawing graphs very frequently. 
The software can save the results to disk in the form of 
comma separated value (CSV) files which can be read into 
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Microsoft Excel for further processing. The amplitudes are 
saved as the moduli squared of the complex rms amplitudes 
expressed in dB relative to a reference rms amplitude which 
can be specified. For FFTs, the phase angles in degrees are 
also saved. 

13.  REVERBERATION TIME MEASUREMENTS 

The reverberation time measuring part of the software 
calculates both reverberation times and decay rates for each 
individual decay, for the ensemble averaged decay curve of 
each measurement configuration, and for the overall 
ensemble averaged decay curve. It also calculates an 
extensive array of statistics. 
Modern computer operating systems allocate slices of time 
to the many processes that are running nominally at the 
same time and possibly actually at the same time on 
multiple threads and on multiple processing units. The 
output and input streams to the digital to analogue and from 
the analogue to digital converters are buffered to try and 
avoid lost data, there are delays due to the conversion 
transmission processes, and there is a time of flight delay 
between the loudspeaker and the microphone. All this 
means, that it is impossible to know at exactly which input 
samples the sound is turned on and turned off. 
The author’s software uses the sudden increase in the level 
in the highest frequency band in which the reverberation 
time is being measured to determine the sample number 
when the sound first effects the microphone signal. When 
the output sound sequence is generated by the software, it 
knows how many sample intervals the sound is turned on 
for, and thus it knows when to start looking for the 
beginning of the sound decay. The decay curves are aligned 
in time so that the starting times of their decays are the same 
before they are ensemble averaged together. When 
averaging the ensemble average decay curves from 
different microphone and loudspeaker combinations, the 
ensemble averaged decay curves are also aligned in time so 
that the starting times of their decays are the same and 
normalized in level so that their steady state levels are the 
same. 
When determining the evaluation range, what does “5 dB 
below the initial sound pressure level” mean for a decay 
record which consists of individual points rather than a 
continuous curve? 
There are at least three possibilities for determining the 
starting point. 
1. The first point in time which is more than “5 dB below 
the initial sound pressure level”. 

2. The point in time immediately prior to the first point in 
time which is more than “5 dB below the initial sound 
pressure level”. 
3. The point, of the two points chosen using possibilities 1 
and 2, which is closest in level to “5 dB below the initial 
sound pressure level”. 
The same possibilities exist when determining the finishing 
point, except that “the finishing level” replaces “5 dB below 
the initial sound pressure level”. But how is the finishing 
level determined? There are at least two possibilities. 
1. The finishing level is the level which is (the evaluation 
range plus 5 dB) “under the initial sound pressure level”. 
2. The finishing level is the level which is the evaluation 
range under the starting point. 
The author’s software supports the use of all these 
possibilities and a variable evaluation range. 

14.  CONCLUSION 

This paper presents examples demonstrating the need to 
minimize the use of “black box” software and hardware by 
developing a laboratory’s own software. It then describes 
the development of such software and some of the issues 
that had to be addressed. The author plans to eventually 
write sound intensity measurement software and two 
microphone impedance tube measurement software. He 
may also write sound level meter software. 
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