
10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

THE DEVELOPMENT OF A LABORATORY’S OWN ACOUSTIC
SIGNAL PROCESSING SOFTWARE

John Laurence Davy1,2*

1 School of Science, RMIT University, Melbourne, Australia
2 Infrastructure Technologies, CSIRO, Melbourne, Australia

ABSTRACT*

RMIT University discovered that the reverberation time
measurement module of new commercial hardware and
software was not as fully automated as it should have been.
The author wrote Visual Basic for Applications software
that fully automated the new commercial software. CSIRO
discovered that the same commercial hardware and
software sometimes produced reverberation times that were
too long due to the software deciding that the decay had
started before the sound was turned off. It was discovered
that one of the reasons why this occurred was that the
firmware random noise generator produced the same
random noise each time it was started, which made decay
curve averaging useless. The author was able to convince
the commercial supplier to fix this problem. Another reason
was that the software sometimes produced undefined levels
and these undefined levels sometimes caused the software
to think that the decay had started before the sound was
turned off. The commercial supplier was unable to fix this
problem. RMIT University has had problems when using
linear averaging to measure reverberation time. These errors
and inadequacies are some of the reasons why CSIRO has
started the development of its own signal processing
software which is described in this paper.

—————————
*Corresponding author: john.davy@gmail.com.

Copyright: ©2023 John Laurence Davy. This is an open-access
article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the
original author and source are credited.

Keywords: acoustic signal processing software,
reverberation time measurement software, development of a
laboratory’s own software, access to computer source code.

1. INTRODUCTION

These days most acoustic signal processing is conducted
using software and/or firmware, partly because much of the
old analogue signal processing hardware has failed with the
passage of time. While some laboratories write some of
their own acoustic signal processing software, many
laboratories use commercial acoustic signal processing
software for which they do not have access to the source
code. This means that they are using “black box” software
and cannot be certain that the software is doing what they
think that is doing. Also, they cannot correct any errors that
they discover in the software, modify the behavior of the
software or add new features to the software. The need to
use commercial software is forced on some laboratories
because some suppliers of acoustic signal processing
software do not release the details of the interfaces to their
front-end hardware in order to force laboratories to use the
supplier’s acoustic signal processing software. CSIRO and
RMIT University have discovered or become aware of
several errors or inadequacies in commercial acoustic signal
processing software. This is one of the reasons why the
author has started to develop acoustic signal processing
software for CSIRO for one commercial supplier’s
acoustical front-end hardware. He has also produced
versions of this software which use soundcards as the front-
end input. The main use of the soundcard version of the

DOI: 10.61782/fa.2023.1310

29

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

software is to interface to professional audio external USB
soundcards.

2. FULL AUTOMATION OF COMMERCIAL
REVERBERATION TIME MEASURING

SOFTWARE

When RMIT University obtained new commercial acoustic
signal processing hardware and software in 2004, they
discovered that its reverberation time measurement module
was not as fully automated as the previous firmware that
they had been using previously. It was necessary to
manually rename the result of each measurement and
manually move each measurement result to a special
location. Fortunately, the commercial software came with
Microsoft Visual Basic for Applications (VBA). The author
wrote a VBA macro which fully automated the
reverberation time measurement process and enabled the
reverberation time measurements results to be output as a
Comma Separated Values (CSV) file or as a Microsoft
Excel Spreadsheet file with a single button click.

3. GENERATION OF THE SAME RANDOM NOISE
SIGNAL EACH TIME THE GENERATOR WAS

STARTED

CSIRO discovered that its commercial acoustic signal
processing software intermittently produced reverberation
times that were too long. Further investigation showed that
this was due to the commercial software deciding that the
sound decay had started before the steady state sound had
been turned off. Initially, it was not clear why this was
happening. Eventually, it was discovered that there were
two reasons for this behavior. The first reason was because
the random noise generator was incorrectly producing the
same random noise signal each time that it was started. This
meant that the ensemble averaging of the decay curves that
CSIRO conducted was not reducing the steady state ripple
of the decay curve. This steady state sound ripple was
sometimes large enough to convince the software that the
sound decay had started before the sound was turned off.
This occurred at low frequencies because the commercial
software, like most software, used the same averaging time
for all constant percentage bandpass filters. This averaging
time had to be short enough to correctly measure the shorter
reverberation times at high frequencies. The ensemble
variance of the random noise sound pressure level is
proportional to the inverse of the product of the statistical
bandwidth of the bandpass filter (which is proportional to

frequency) and the averaging time. Hence the steady state
sound level ripple is greater at low frequencies.
The random noise was generated by the firmware in the
hardware front-end. It was obvious that the reason for the
same random noise signal, each time the random noise
generator was started, was that the firmware was using the
same starting seed for generating the random noise.
Random noise generators usually use a different seed each
time that they are started. This seed is usually obtained from
the time outputted by a real time clock.
The author contacted the commercial equipment supplier,
and they upgraded their firmware in their current range of
measuring equipment. They were not going to upgrade the
firmware in their previous range of measuring equipment
because it was close to the end of its ten-year maintenance
period after being discontinued. The author contacted them
again and pointed out how serious the error was because it
made ensemble averaging useless. The author also pointed
out that international standards would have to be changed to
include a warning about this fault. The commercial supplier
then agreed to upgrade the firmware in their previous range
of measuring equipment.

4. THE OCCURRENCE AND THE EFFECT OF
“UNDEFINED” LEVELS

Unfortunately, even after the same random noise signal
error was corrected by the firmware upgrade, reverberation
times that were too long still intermittently occurred. It
turned out that this was due to the occurrence of
“undefined” levels in all frequency bands for a sequence of
successive times. This was difficult to detect because the
commercial software does not warn the user when
undefined levels occur. The commercial software ensemble
averages decay curves before calculating the reverberation
time using the ensemble averaged decay curve. When
“undefined” levels occur during the steady state sound
period, the ensemble average decay curve produced by the
commercial software surprisingly gradually increases above
its expected steady state level before suddenly falling back
to its expected steady state level when the “undefined”
values stop occurring. It is this sudden fall that sometimes
causes the commercial software to decide that the sound
decay has started before the sound is turned off. CSIRO
reported this fault to the commercial equipment supplier
and supplied them with the configuration of their software
that CSIRO was using. Unfortunately, the commercial
equipment supplier was unable to reproduce this fault and it
remains unfixed. CSIRO was surprised that the commercial
equipment supplier was unable to tell them the source of the

30

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

“undefined” levels, even if they could not tell CSIRO why
the “undefined” levels were occurring.

5. PROBLEM WITH SHORT TERM LINEAR
AVERAGING WHEN MEASURING VERY SHORT

REVERBERATIN TIMES

RMIT University had problems when using commercial
software with short linear averages to measure very short
reverberation times in a very small reverberation room
(“Alpha Cabin”) with volume of 2.89 m2. The decay curves
had a very large ripple and the time intervals between
successive linear integrals were surprisingly not uniform.
This problem was only overcome by using exponential
averaging, which is not desirable because if the exponential
averaging time is not chosen correctly, exponential
averaging can bias the measured decay rate. It seems that
the commercial equipment supplier prefers exponential
averaging except for long term Leq measurements.

6. OTHER PROBLEMS

In a European round robin on sound absorption coefficient
measurement conducted by ISO/TC 43/SC 2/WG 35, a
highly respected standards laboratory obtained sound
absorption coefficients that were clearly too low. After
investigation, they concluded that this was due to the use of
new “black box” hardware and software.
The author tests the performance of reverberation time
measurement software by using it to measure the
reverberation time of fast exponential averaging (time
constant equals 1/8 s and averaging time equals ¼ s). The
measured reverberation time should be approximately 1.73
s. In the early 1990’s, the firmware in one piece of
commercial equipment produced the wrong reverberation
tine and non-linear decibel versus time decay curves. The
firmware in another piece of commercial equipment
produced the correct reverberation time, but decibel versus
time decay curves that were linear except at the bottom end
where they curved down to the bottom of the display range.
This appeared to be an attempt to hide the background noise
of the device.

7. SIGNAL PROCESSING SOFTWARE
DEVELOPMENT WITH PYTHON

In 2020, a major commercial supplier of acoustical
measuring equipment and software released an Open
Applications Programming Interface (Open API) for their

current range of acoustical measurement front-end
hardware. Because of all the issues mentioned above
CSIRO purchased a license for this Open API. Later, the
commercial supplier made the license for this interface
available for free when they released another firmware
update for their front-ends. CSIRO asked for their money
back, but were refused. However, the fact that the license
was free meant that CSIRO did not have to purchase
another Open API license when they obtained another
front-end module.
The commercial supplier had made available the source
code for a number of example programs using the Open
API in a number of different software languages. However,
the only example programs that performed any signal
processing were written in Python. Hence the author’s
initial software development was written in Python. Python
is available for free and its NumPy and SciPy modules have
extensive signal processing capability, including Fast
Fourier Transforms (FFTs) and digital filtering design and
implementation.
The two Python examples calculated and displayed a single
FFT spectrum. Thus, the author’s first Python program
continuously calculated, displayed and stored FFT spectra
in real time. Only the level in decibels is displayed, but both
the level in decibels and the phase in degrees are stored and
can be saved as a CSV file which can be viewed as a text
file and read into Microsoft Excel for further processing.
Both the level in decibels and the phase in degrees are
needed to calculate the individual cross spectra in Excel.
These individual cross spectra can then be averaged over
the repeated FFTs. If the front-end has only two input
channels, it would be appropriate to calculate the single
cross spectrum in the program, but this not appropriate if
the front end has more than two input channels because
there are so many possible cross spectra that can be
calculated. The program can be set to calculate a given
number of FFTs and save the results to disk, or to run
continuously until stopped by the user but only display the
level in decibels.
The program was then modified to calculate fractional
octave band spectra using linear or exponential averaging.
This version of the program was then extended to calculate
reverberation time.

8. THE CHANGE TO C#

A problem with these two Python programs is that they
could not run continuously in real time at the highest
sampling rates and with the maximum number of channels
even when parallel processing was used. Eventually it was

31

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

discovered that Python could not read the data in over the
ethernet interface fast enough even when performing no
data processing. The highest speed case was 24 bits per
sample at 131072 samples per second per channel and six
channels. At this stage the reluctant decision was made to
change to C# which experiment showed could read the data
in fast enough over the ethernet interface. The reason for
this difference is that Python is an interpreted language
although there is some pre-compilation, while C# is a
compiled language. However, C# was run in debug mode in
Microsoft’s Visual Studio which is like running an
interpreted program. The Community version of
Microsoft’s Visual Studio is free for non-commercial use.
C# would run even faster as a stand-alone non-debug
compilation.
An upgrade to the firmware of the six-channel input front-
end, that the author was using, enabled each channel to use
a separate ethernet port. This enabled each channel to be
read and processed in a separate parallel thread.
A problem with using C# is that, unlike Python, it does not
come with modules that contain FFT routines or filtering
design and implementation routines. It is necessary to use
third party modules. Thus, the software uses FFTW which
was developed at the Massachusetts Institute of
Technology. FFTW is reportedly one of the fastest
implementations of the Fast Fourier Transform and is
reportedly used in the commercial MATLAB software
package. However, it is written in C and thus it is necessary
to use one of several C# wrappers. The author’s C#
programs use the FFTW.NET C# wrapper. These programs
use the NWAVES software package to design and
implement the digital filters and to calculate the FFT
window functions.

9. SOUNDCARDS

Having written these two programs, the author then decided
to convert these programs for use with soundcards. The
main reason for doing this was to be able to use
professional external USB soundcards as front-ends to
replace aging and failing analogue acoustic measuring and
analyzing equipment. The author used the Audio Streaming
Input Output (ASIO) soundcard software interface that is
supported by most professional audio soundcards or one of
several possible Microsoft Windows soundcard software
interfaces. If a soundcard does not have an ASIO interface,
it may be possible to use the ASIO4ALL software interface
which tries to interface to one of the Microsoft Windows
soundcard software interfaces. Because the ASIO software
interface, the ASIO4ALL software interface, and the

Microsoft Windows soundcard interfaces are written in C,
the author used the NAUDIO package to interface to them.
If the sound card has more than two input channels or more
than two output channels, it is necessary to use the ASIO
interface to use more than two input channels or two output
channels.
The author’s acoustic group at CSIRO has two professional
external USB soundcards. One of these has eight analogue
inputs and ten analogue outputs. The other has two
analogue inputs and two analogue outputs. Both these
devices can supply 48 V phantom power. It is possible to
purchase 48 V phantom power preamplifiers for pre-
polarized measurement microphones, but it is also possible
to purchase 48 V phantom power to Integrated Electronics
Piezo-Electric (IEPE) adaptors. Because two of CSIRO’s
commercial acoustical measurement front-ends support
IEPE, CSIRO decided to purchase 48V phantom power to
IEPE adaptors, IEPE half inch measurement microphone
preamplifiers and half inch pre-polarized measurement
microphones. CSIRO also has a commercial acoustical
measurement external USB front-end. Upon opening, this
device was found to consist of an IEPE input board and an
external USB sound card board. This device came with six
integrated quarter inch microphone preamplifiers and
quarter inch pre-polarized measurement microphones. This
device and the combination of the 48V phantom power to
IEPE adaptors and the external USB professional audio
soundcards can also be used with piezo electric
accelerometers which have built in IEPE preamplifiers.
Hence the IEPE approach gives maximum flexibility. For
measurement microphones which require an external
polarizing voltage, it is necessary to use an appropriate
microphone preamplifier power supply or use one of the
acoustic measurement front ends with 7 pin LEMO or Brüel
and Kjær microphone preamplifier sockets.
Professional audio external USB soundcards are not
suitable for measuring absolute voltage levels because their
peak input voltages are not calibrated, they have relatively
low input impedances, and they have continuously variable
uncalibrated input attenuators. But absolute voltage
measurement is not required for most acoustical
measurements because the whole measurement system is
usually calibrated by placing a sound level calibrator on
each of the measurement microphones when absolute sound
pressure measurements are required. A vibration calibrator
can be used with accelerometers and geophones. For many
acoustic and vibration measurements only measurements of
the level differences are required. This is the case for
airborne sound insulation measurements if the
measurements are made in both directions or if the
measurement chains are swapped between rooms. It is also

32

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

the case for reverberation time measurements and hence for
diffuse sound absorption coefficient measurements. For two
microphone impedance tube measurements, the two
measurements are swapped during the calibration
procedure, and again microphone calibration is not needed.
Frequency response measurements also do not require
absolute voltage measurements, because the measurements
at two different frequencies only have to be relative, and
usually both the input and output signal levels are
measured.
Professional audio external USB soundcards have to have
good linearity in order to have low distortion and have to
have low noise to avoid annoyance. They have fairly flat
frequency responses from about 20 Hz up to their ani-
aliasing filters. Most current professional audio external
USB soundcards are 24 bit per sample and support the
following sampling frequencies: 44.1, 48, 88.2, 96, 176.4
and 192 kHz. These frequencies appear to be very accurate.
The phase and level matching between different input
channels and between different output channels appears to
be fairly good.
One of the differences between the acoustic measurement
front-ends that CSIRO has and the soundcards is that the
acoustic measurement front-ends have large buffers and
transfer the measured sample values in blocks that are
always a positive integer power of 2. The soundcards have
relatively small buffers because they are trying to obtain
low latency and the number of samples that they transfer at
a time is not necessary a positive integer power of 2. Thus,
the author’s programs for the soundcards had to implement
sufficient buffering and supply the data in blocks with a
positive integer power of 2 number of samples for the
signal processing.
One of CSIRO’s acoustic measurement front-ends has four
input channels and two output channels. The firmware in
this device can produce a number of different types of
output signals. The author’s software uses this capability to
switch on and off random noise for interrupted random
noise reverberation time measurements. However, CSIRO’s
other acoustic measurement front-end only has six input
channels. Thus, it is necessary to use an external random
noise generator for interrupted random noise reverberation
time measurements. Hence the author implemented a USB
connection to an Arduino board to turn on and off a relay
controlling the random noise. He also implemented a USB
connection to a General Purpose Interface Bus (GPIB)
controller to switch on and off the random noise generator
in a Norsonics NE830 real time analyzer. The acoustic
front-end with the two output channels can also output
arbitrary waveforms like a soundcard, but the author has not
yet used this capability. For the sound cards, the author has

implemented the output of pink random Gaussian noise,
white random Gaussian noise, sine waves, square waves,
sawtooth waves, swept sine waves and zero signal output
(for turning off the output).
Once the FFT and fractional octave filtering programs were
converted to the two different soundcard interfaces, the
author wrote a stepped sine program for measuring
frequency responses for the two different soundcard
interfaces. He will eventually adapt this program to work
with the acoustic front-ends.

10. CONSOLE AND GRAPHICAL USER
INTERFACES (GUI)

The programs described in this paper were initially written
as Microsoft Windows Console applications. The
configuration is controlled by setting variables which are at
the start of the program source code. Since the programs are
fast enough that they can be run in debug mode in
Microsoft Visual Studio which is a Graphical User Interface
(GUI) Program, the program settings are actually changed
in a GUI program, but the rest of the interaction with the
program occurs in a Console window.
The author is in the process of converting these Console
programs to GUI programs. There are some issues involved
with doing this. Microsoft Windows was initially developed
when personal computers were only single threaded. This
means that the Microsoft COM protocol which is used to
communicate with the Microsoft Windows graphical
components is not thread safe. But threads have to be used
for parallel processing. This means that it is necessary to
check whether the program is calling a Microsoft Windows
graphical component from the same thread that it is running
in. If this is not the case, it is necessary to call the graphical
component via a function which is forced to run in the same
thread as the graphical component. This forcing is
necessary because functions normally run in the thread that
they are called from.
To use the Microsoft Windows graphing functions, it is
necessary for both the Console and the GUI programs to
use the .NET Framework rather than the more general .NET
environment.

11. FRACTIONAL OCTAVE BANDPASS FILTERS

It is possible to design analogue third order third octave
Butterworth bandpass filters which satisfy the class 1
requirements in the current international octave-band and
fractional-octave-band filter standards [1-3]. This is not the
case for digital third order third octave Butterworth

33

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

bandpass filters. The highest frequency filter in each octave
band only satisfies the class 2 requirements in part of the
frequency range below its centre frequency. There are two
reasons for this. The North Americans pointed out many
years ago that the frequency response limits in the current
international standards are not well centred about
Butterworth bandpass filter frequency responses. The
second reason is that analogue bandpass filters tend to be
symmetrical in the logarithmic frequency domain and
digital bandpass filters tend to be symmetrical in the linear
frequency domain.
Digital third order elliptic bandpass filters can be designed
to satisfy the current octave-band and fractional-octave-
band filter standards. However, the author chose to use
digital fourth order Butterworth bandpass filters because the
ratio of the 3 dB down or half power bandwidth to the
standard noise or effective bandwidth of an arbitrary
analogue Butterworth bandpass filter of any order can be
calculated [4]. This ratio can be used to calculate the lower
and upper 3 dB down or half power frequencies of the
analogue Butterworth bandpass filter which has the noise or
effective bandwidth required by the current standards.
These two frequencies divided by the Nyquist frequency are
needed as inputs to the software used to design the digital
Butterworth bandpass filter. The author understands that
this software usually works by designing an analogue
Butterworth lowpass filter, converting this filter to an
analogue Butterworth bandpass filter, and then converting
this filter to a digital Butterworth bandpass filter.
Some caution is needed here, because the equation for the
ratio of the 3 dB down or half power bandwidth to the
standard noise or effective bandwidth of an arbitrary
analogue Butterworth bandpass filter of any order is strictly
speaking only correct for the analogue Butterworth
bandpass filter which is converted to the digital Butterworth
bandpass filter. Secondly, the standard definition of the
noise or effective bandwidth used to derive this ratio
assumes that the exciting signal is white Gaussian random
noise. Somewhat surprisingly, the current international
standards use a nonstandard definition of the normalized
noise or effective bandwidth which assumes that the
exciting signal is pink Gaussian random noise. This appears
to be done so that measurements of the normalized noise or
effective bandwidth can be made using a constant
amplitude sine wave whose frequency varies exponentially
with time and because a pink Gaussian random noise signal
has a flat fractional octave spectrum. Numerical integrations
to calculate the noise or effective bandwidth following the
requirements of the current international standards of a
fourth order Butterworth fractional octave bandpass filter
designed following the method described above showed

that the noise or effective bandwidth was less than the
required by 0.039 dB for a 31.5 kHz octave filter and by
0.010 dB for a 40 kHz third octave filter. These two decibel
differences are less than one quarter of the magnitudes of
the allowed decibel differences between the noise or
effective bandwidth and the required value of ±0.4 dB for
class 1 filters and ±0.6 dB for class 2 filters. In the 1970s,
CSIRO purchased a General Radio third octave band real
time analyzer. This consisted of a bank of parallel analogue
third octave filters and a scanning digital voltmeter which
sampled at an average sampling rate of about 50,000
samples per second. Because it scanned the outputs of about
50 filters, each filter was scanned at an average sampling
rate of only about 1000 samples per second. Thus, many of
the outputs of the higher frequency analogue filters were
scanned below the Nyquist frequencies required for
sampling their output signals. To try and avoid coherence
between the output signals of the analogue filters and the
sampling rate, the sampling rate was varied by a factor of
about two over the selected linear integrating time.
Although this approach worked well, in 1978 when the
author visited the Danish Technical University, he
discovered that they were unhappy with this solution. They
used the General Radio bank of parallel analogue third
octave filters, but had developed their own scanning digital
voltmeter which scanned the third octave filters in each
lower octave band at half the sampling rate used in the
octave band immediately above. With this approach, they
were able to sample all the filter outputs with a Nyquist
frequency above the frequency range of each filter, but still
have the same total sampling rate.
The first Brüel and Kjær third octave band real time
analyzer used a bank of parallel analogue third octave filters
and a bank of parallel analogue root mean square voltmeters
and exponential averaging devices whose output voltages
were digitally sampled at a low sampling rate and displayed
on a video screen. There was one analogue root mean
square voltmeter and one exponential averaging device for
each analogue third octave filter.
When Brüel and Kjær developed their first digital third
octave band real time analyser, they adopted a version of
the idea used by the Danish Technical University. In half of
the signal processing time, all the outputs of the digital third
octave bandpass filters in the top octave were calculated
and the signal was low pass filtered and every second
sample was passed for processing to the digital filters in the
octave band immediately below the current octave band and
further low pass filtering. This halved the Nyquist
frequency and meant that the filtering for the filters in the
next highest octave took only half the time of the top octave
band, namely one quarter of the total signal processing

34

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

time. The next highest octave band then took only one eight
of the total signal processing time, and so on. This meant
that all the filters in all the octaves bands could be
processed in real time in the total amount of the signal
processing time that was available. The software developed
by the author also uses this process to obtain the fastest
signal processing speed that is possible. Another reason for
using this process is that numerical instability can occur if
the bandwidth of a digital bandpass filter is very small
compared to the Nyquist frequency. This can occur if digital
bandpass filters in a large number of octave bands are
directly calculated using the unreduced original sampling
rate because the bandwidth of a constant percentage band-
pass filter is proportional to its centre frequency. The low
pass filter is a twelfth order Butterworth low-pass filter
which is 0.1 dB down at the top edge frequency of the next
highest octave band. This top edge frequency is of course
equal to the bottom edge frequency of the current octave
band for which signal processing is being conducted.
The signal processing software developed by the author can
conduct linear or exponential averaging. For reverberation
time measurements it is desirable to be able to vary the
averaging time as a function of the centre frequencies of the
fractional octave filters. For exponential averaging it is
possible to set a different averaging time for each fractional
octave filter. However, because the number of fractional
octave filters becomes large when the frequency range in
octaves becomes large and the number of filters per octave
is also large, the software currently uses a constant
exponential averaging time for all filters in a particular
octave band, but allows this constant exponential averaging
time to be different for different octave bands. The initial
linear averaging time is the same for all frequencies, but
longer averaging times can be obtained by calculating the
running average of the current and the last so many linear
averages. Again, the number of averages combined to form
a running average is currently the same for all fractional
octave filters in a particular octave band but can be different
for different octave bands. For statistical purposes, it is
sometimes desirable to use statistically independent levels
when calculating reverberation times. Thus, the software
enables the use of only every Nth running average when N
linear averages have been averaged to form the running
average.

12. FAST FOURIER TRANSFORMS (FFT)

Most Fast Fourier Transform (FFT) software packages
only return the complex amplitudes of the non-negative
frequency spectrum lines because the complex amplitude

of a negative frequency spectrum line of an FFT of real
number values is equal to the complex conjugate of the
complex amplitude of the corresponding positive
frequency spectrum line. This means that it is necessary
to multiply the complex amplitudes by 2. But it is then

necessary to divide the complex amplitudes by 2 to
convert them to root mean square values. This means

that the nett effect is multiplication by 2 . These
corrections are not needed for the zero-frequency
spectrum line. It is then necessary to correct for the
effects of the windowing function w(n) that has been
used.by multiplying the complex amplitudes by the
amplitude correction factor Aw,

 ()
1

0

N

w
n

A N w n
−

=

=  (1)

where N is the number of samples whose FFT is being
calculated. Effectively, the complex amplitudes are
divided by the average value of the windowing function.
However, conducting a reverse FFT of the spectrum of
an FFT should produce the original samples. This is not
the case unless both the FFT and the reverse FFT are
divided by divisors whose product is equal to N, the
number of original samples. Unfortunately, most FFT
software packages divide the FFT results by 1 and the
reverse FFT results by N. Exactly the opposite is needed
for signal processing. This means that the complex
amplitudes have to be multiplied by

 ()
1

0

2 2
N

w
n

A N w n
−

=

=  (2)

The use of a windowing function increases the noise or
effective bandwidth Be of a spectral line beyond the line
spacing Δf = 1/(NΔt) of the centre frequencies of the
spectral lines, where Δt is the time interval between
samples. If random noise is being measured, the results
can be made independent of the spectral line spacing and
the window being used by dividing the moduli squared
of the complex rms amplitudes of the spectral lines by
the noise or effective bandwidth Be to obtain the spectral
densities.

 () ()
21 1

2

0 0

N N

e
n n

B N f w n w n
− −

= =

 
=   

 
  (3)

The software presents the mean square values or spectral
densities as decibels in real time in the form of graphs. The
values displayed in each set of graphs can be averages of a
number of measurements if necessary, in order to reduce
the computing load of redrawing graphs very frequently.
The software can save the results to disk in the form of
comma separated value (CSV) files which can be read into

35

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

Microsoft Excel for further processing. The amplitudes are
saved as the moduli squared of the complex rms amplitudes
expressed in dB relative to a reference rms amplitude which
can be specified. For FFTs, the phase angles in degrees are
also saved.

13. REVERBERATION TIME MEASUREMENTS

The reverberation time measuring part of the software
calculates both reverberation times and decay rates for each
individual decay, for the ensemble averaged decay curve of
each measurement configuration, and for the overall
ensemble averaged decay curve. It also calculates an
extensive array of statistics.
Modern computer operating systems allocate slices of time
to the many processes that are running nominally at the
same time and possibly actually at the same time on
multiple threads and on multiple processing units. The
output and input streams to the digital to analogue and from
the analogue to digital converters are buffered to try and
avoid lost data, there are delays due to the conversion
transmission processes, and there is a time of flight delay
between the loudspeaker and the microphone. All this
means, that it is impossible to know at exactly which input
samples the sound is turned on and turned off.
The author’s software uses the sudden increase in the level
in the highest frequency band in which the reverberation
time is being measured to determine the sample number
when the sound first effects the microphone signal. When
the output sound sequence is generated by the software, it
knows how many sample intervals the sound is turned on
for, and thus it knows when to start looking for the
beginning of the sound decay. The decay curves are aligned
in time so that the starting times of their decays are the same
before they are ensemble averaged together. When
averaging the ensemble average decay curves from
different microphone and loudspeaker combinations, the
ensemble averaged decay curves are also aligned in time so
that the starting times of their decays are the same and
normalized in level so that their steady state levels are the
same.
When determining the evaluation range, what does “5 dB
below the initial sound pressure level” mean for a decay
record which consists of individual points rather than a
continuous curve?
There are at least three possibilities for determining the
starting point.
1. The first point in time which is more than “5 dB below
the initial sound pressure level”.

2. The point in time immediately prior to the first point in
time which is more than “5 dB below the initial sound
pressure level”.
3. The point, of the two points chosen using possibilities 1
and 2, which is closest in level to “5 dB below the initial
sound pressure level”.
The same possibilities exist when determining the finishing
point, except that “the finishing level” replaces “5 dB below
the initial sound pressure level”. But how is the finishing
level determined? There are at least two possibilities.
1. The finishing level is the level which is (the evaluation
range plus 5 dB) “under the initial sound pressure level”.
2. The finishing level is the level which is the evaluation
range under the starting point.
The author’s software supports the use of all these
possibilities and a variable evaluation range.

14. CONCLUSION

This paper presents examples demonstrating the need to
minimize the use of “black box” software and hardware by
developing a laboratory’s own software. It then describes
the development of such software and some of the issues
that had to be addressed. The author plans to eventually
write sound intensity measurement software and two
microphone impedance tube measurement software. He
may also write sound level meter software.

15. REFERENCES

[1] IEC 61260-1:2014 Electroacoustics – Octave-band
and fractional-octave-band filters – Part 1:
Specifications Edition 1.0 2014-02, in, International
Electrotechnical Commission, Geneva, Switzerland,
2014, pp. 93.

[2] IEC 61260-2:2016 Electroacoustics – Octave-band
and fractional-octave-band filters – Part 2: Pattern-
evaluation tests Edition 1.0 2016-03, in,
International Electrotechnical Commission, Geneva,
Switzerland, 2016, pp. 55.

[3] IEC 61260-3:2016 Electroacoustics – Octave-band
and fractional-octave-band filters – Part 3: Periodic
tests, in, International Electrotechnical Commission,
Geneva, Switzerland, 2016, pp. 51.

[4] J.L. Davy, I.P. Dunn, The statistical bandwidth of
Butterworth filters, Journal of Sound and Vibration,
115 (1987) 539-549.

36

