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ABSTRACT

Safe driving depends on both internal and external factors
of the vehicle, including those manifested as acoustic sig-
nals. Sounds, whether external, such as sirens or horns,
or internal, such as conversations between passengers or
the sound system, provide critical information to identify
events that could compromise safety. The placement of
microphones used for monitoring and feeding into an ar-
tificial intelligence-based detection system plays a crucial
role. Microphones placed externally are essential for cap-
turing sounds like sirens or horns, but they face challenges
such as wind noise and vibrations caused by the move-
ment of the vehicle. On the other hand, detecting these
external events from the interior presents difficulties due
to attenuation or distortion caused by the acoustic insu-
lation of the body of the vehicle. This work explores the
relevance of microphone placement by comparing the per-
formance of models when processing data captured sepa-
rately from the interior and exterior of vehicles. The chal-
lenges associated with capture are also discussed.
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1. INTRODUCTION

Audio-based event detection systems offer distinct ad-
vantages over vision-based systems in vehicle safety and

*Corresponding author: carlos.castorena@uv.es.
Copyright: ©2025 Carlos Castorena et al. This is an open-
access article distributed under the terms of the Creative Com-
mons Attribution 3.0 Unported License, which permits unre-
stricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Milaga, Spain * 2

2295

driver assistance, particularly in scenarios where a di-
rect line of sight to the event source is obstructed [1].
The ability to recognize critical acoustic cues, such as
emergency vehicle sirens or horn sounds, enhances sit-
uational awareness and supports timely decision-making
while driving [2, 3]. However, the performance of such
systems is highly sensitive to microphone placement and
their robustness in dynamic, noisy environments.

Microphone positioning plays a critical role in de-
termining the accuracy and reliability of audio-based de-
tection systems. External microphones, mounted out-
side the vehicle, are well-suited to capturing environ-
mental sounds, such as approaching emergency vehicles
or honking cars. However, they are vulnerable to vari-
ous interferences, including wind noise, road noise, and
other environmental disturbances. To mitigate these is-
sues, approaches such as physical filters [4], digital sig-
nal processing techniques [5], and deep learning-based
noise reduction methods [6] have been proposed. While
these methods enhance detection performance, they re-
quire careful optimization to remain effective under di-
verse real-world conditions.

In contrast, placing microphones inside the vehicle
provides a more controlled acoustic environment, thereby
reducing exposure to external noise. Nonetheless, this
setup introduces its own challenges, such as sound atten-
uation caused by the vehicle’s structure and interference
from internal noise sources like conversations, infotain-
ment systems, and engine vibrations. Additionally, cap-
turing external acoustic events from within the cabin is
complicated by the sound-insulating properties of modern
vehicle designs. To address these challenges, advanced
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deep learning models capable of processing polyphonic
sound events [7, 8]—where multiple overlapping sounds
occur simultaneously—are increasingly employed. These
models improve the system’s ability to differentiate be-
tween relevant and irrelevant auditory signals within the
complex acoustic environment of a vehicle interior.

Recent research has also explored multimodal ap-
proaches [9] that integrate both audio and visual data
to improve event detection capabilities. By combin-
ing acoustic signals with visual cues, these systems can
compensate for limitations in either modality, leading to
improved overall detection accuracy. However, multi-
modal systems introduce additional complexities, includ-
ing higher computational demands, synchronization re-
quirements between audio and video streams, and sen-
sitivity to adverse environmental conditions (e.g., poor
lighting or occlusions) that may impair one or both modal-
ities. These limitations highlight the need for thoughtful
design and implementation when considering multimodal
solutions.

This study evaluates the impact of microphone place-
ment—inside versus outside the vehicle—on the perfor-
mance of three state-of-the-art deep learning models: the
Audio Spectrogram Transformer (AST) [4, 10], Convo-
lutional Recurrent Neural Networks (CRNN) [11, 12],
and a version of YOLO adapted for audio spectrogram
inputs [8, 13]. Rather than focusing solely on perfor-
mance comparisons, the primary objective is to investi-
gate how microphone placement, ambient noise condi-
tions, and overlapping sound events influence the ability
of each model to detect key auditory events, such as sirens
and horn sounds, under realistic driving scenarios. By ex-
amining detection accuracy across different microphone
configurations, this work sheds light on the trade-offs in-
herent in each setup and contributes to the development
of more robust and context-aware audio-based detection
systems for intelligent vehicle applications.

2. METHODOLOGY
2.1 Data Collection

To evaluate model performance under different acoustic
conditions, two distinct sets of audio recordings were col-
lected. Recordings were made using WM-61A DIY and
XYH-6 microphones connected to a Zoom H6 recorder to
ensure synchronized multi-channel capture. Two channels
were placed inside the vehicle, centrally positioned, while
four were mounted externally—two on each side. The ex-

ternal microphones were installed on a stable base and fit-
ted with physical wind filters, which have been shown in
prior studies to effectively reduce wind interference. The
microphone layout is shown in Figure 1.

In Scenario 1, recordings were conducted both inside
and outside the vehicle under low-noise conditions . No
additional sound sources from the inside—such as radio,
mobile phones, or conversations—were present . This
scenario represents an idealized environment with mini-
mal internal interference. A total of 1245 seconds were
recorded, which were segmented into 4-second clips us-
ing a 1-second sliding window, resulting in 23 horn and
94 siren events.

Scenario 2 was designed to simulate a realistic and
noisy in-cabin environment. In this case, background
sounds including conversations, radio playback, and mo-
bile phone usage were deliberately introduced. The to-
tal duration of this recording was 877 seconds, yielding
29 horn and 179 siren events after segmentation using the
same process as in Scenario 1.

Both datasets were segmented into overlapping 4-
second clips using a 1-second stride to construct a con-
tinuous and structured dataset. Rather than adopting a
traditional sound event detection (SED) framework, each
segment was assigned a single label—Horn, Siren, or No
Event—based on the presence of a target sound within the

Figure 1: Microphone placement in the vehicle. Mi-
crophones M1-M4 (WM-61A DIY) are positioned
externally, while microphone M5 (XYH-6, two chan-
nels) is located inside.
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clip. This simplified labeling strategy was chosen to facil-
itate a direct and controlled comparison of model perfor-
mance across different microphone placements, focusing
on the detectability of key acoustic events rather than pre-
cise time event localization or boundary detection. While
this approach does not capture the full temporal dynamics
of sound events, it provides a practical and interpretable
means of evaluating classification accuracy under varying
acoustic conditions.

All recordings were conducted with the vehicle in a
stationary state to minimize wind-induced noise, whose
limited impact has been demonstrated in [4]. The record-
ing site was selected to ensure consistent exposure to
traffic-related sounds, resulting in a naturally high fre-
quency of siren and horn events.

To illustrate the acoustic differences between scenar-
ios, Figure 2 shows representative 4-second audio seg-
ments from both conditions: (a) a clean sample from Sce-
nario 1, and (b) a more complex recording from Scenario
2, where overlapping internal sounds such as speech and
object interaction are present.

Outside

Inside

(a) Scenario 1: 4-second audio segment with minimal
background noise.

Qutside

Inside

(b) Scenario 2: 4-second audio segment with overlap-
ping in-cabin events (e.g., speech, object handling).

Figure 2: Representative audio samples from the two
recording scenarios. Scenario 1 provides a low-noise
baseline, while Scenario 2 reflects more realistic in-
vehicle acoustic conditions.

2.2 Detection Models

To investigate how microphone placement affects the de-
tection of relevant acoustic events in vehicular contexts,
we implemented three deep learning-based models with
distinct architectural characteristics: the Audio Spectro-
gram Transformer (AST), a Convolutional Recurrent Neu-
ral Network (CRNN), and a fully convolutional architec-
ture based on YOLO. While the primary goal is not to
compare absolute model performance, these architectures
offer complementary perspectives on how different micro-
phone configurations influence the perception and classifi-
cation of acoustic signals. Each model was adapted to pro-
duce standardized outputs—three class probabilities for
Siren, Horn, and No Event—to enable a consistent eval-
uation framework.

The AST model [14] leverages a Multihead Self-
Attention mechanism to learn long-range dependencies
within audio sequences. This capacity to capture global
contextual information makes it particularly effective for
identifying complex acoustic patterns, even in the pres-
ence of noise or temporal distortion. In this study, AST
was trained using 4-second Mel spectrograms with 128
Mel bands, a 32 ms analysis window, and a 10 ms hop
size. Unlike the other models, AST processes stereo audio
by jointly analyzing two input channels. For in-cabin de-
tection, the two interior microphones were used as stereo
input; for exterior detection, the two side-mounted micro-
phones were combined. To adapt the model for three-class
classification, the pre-trained attention layers were frozen,
and a dense layer with 768 neurons and PReLU activation
was added, followed by a softmax output layer with three
units [4].

The CRNN model [11,12] combines two-dimensional
convolutional layers for spectral feature extraction with a
bidirectional GRU layer to model the temporal evolution
of sound events. Its frame-wise output allows for tempo-
ral localization of events within each segment. In contrast,
the YOLO-based model [8] follows a fully convolutional
approach adapted from object detection in computer vi-
sion. It produces predictions at multiple temporal reso-
lutions using bounding-box-like structures, without rely-
ing on sequential modeling. Both CRNN and YOLO op-
erate on single-channel audio, and were thus trained and
tested on individual microphone signals. Input Mel spec-
trograms for these models were computed with 128 Mel
bands, a 32 ms window, a 16 ms hop, a Hamming window
function, and a 2048-point FFT, all sampled at 16 kHz.

The models were trained on a curated subset of open-
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source datasets, primarily based on AudioSet [15], aug-
mented with additional publicly available recordings of
sirens, horns, and urban noise. Training procedures were
customized for each architecture, ensuring that learned
features aligned with the goal of robust acoustic event de-
tection under real-world conditions.

While AST was trained using 4-second monophonic
labels, both CRNN and YOLO were originally designed
for polyphonic event detection across 10-second clips.
For evaluation, however, all models were tested using 4-
second segments to ensure consistency. Although AST
does not support polyphony, this limitation had minimal
impact in our experimental setting, where overlapping
events were rare. Nevertheless, this distinction remains
an important consideration when interpreting the models’
capabilities in more complex acoustic environments.

2.3 Performance Metrics and Evaluation

The performance of each model was evaluated using stan-
dard classification metrics: precision (P), recall (R), and
F1-score (F1), which are commonly used in classification
tasks. These metrics provide a comprehensive assessment
of model performance, particularly in scenarios with im-
balanced class distributions. In such cases, it is essen-
tial to evaluate not only the quantity of correct predictions
but also their relevance and consistency. This is espe-
cially important in the context of acoustic event detection,
where the goal is to identify specific sounds (e.g., horns
and sirens) amidst varying levels of background noise.

The recordings used in this study were segmented into
4-second clips with a 1-second sliding window. Each seg-
ment was assigned a single label—Horn, Siren, or Noth-
ing—with events outside these categories discarded, par-
ticularly for the CRNN and YOLO models. These models
generate hard predictions, meaning they provide precise
timestamps for detected events within each 4-second seg-
ment. For consistency across all models, these timestamps
were converted into weak labels, simplifying the task to
a binary classification problem, i.e., determining whether
an event was present or absent in each segment, without
considering its exact duration or temporal position.

Each model was evaluated using both interior and ex-
terior microphones, under two distinct recording condi-
tions. Scenario 1, with minimal background noise, rep-
resents a controlled environment, allowing us to assess
model performance in an ideal setting. In contrast, Sce-
nario 2 introduces background noise from conversations,
radio playback, and mobile phone use, simulating a more

realistic in-vehicle environment. By analyzing the perfor-
mance of the models in these scenarios, we can assess how
the placement of the microphone affects the detection ac-
curacy and robustness of the models under varying acous-
tic conditions.

3. RESULTS

The results presented in Table 1 highlight the impact
of microphone placement and background noise on the
performance of the three deep learning models—AST,
YOLO, and CRNN—in detecting acoustic events. Over-
all, all models performed better with external micro-
phones compared to internal ones. This effect was ob-
served in both scenarios, but it was especially pronounced
in Scenario 2, where background noise from conversa-
tions, radio playback, and mobile phone use inside the
vehicle further degraded performance.

In Scenario 1, where external microphones captured
clearer signals, AST achieved the highest F1-score (0.77),
followed closely by YOLO (0.72) and CRNN (0.51).
AST’s superior performance in this controlled environ-
ment is largely attributed to its high recall values, par-
ticularly for horn detection (0.96). However, when eval-
vated inside the vehicle, all models experienced perfor-
mance drops. AST, despite maintaining the highest F1-
score (0.69), showed a notable decline in recall (0.63),
while YOLO and CRNN also decreased to 0.50 and 0.34,
respectively.

The performance degradation is even more evident in
Scenario 2, where additional noise sources such as con-
versations, radio, and mobile phone sounds were present.
AST exhibited the most pronounced decline, particularly
for horn detection inside the vehicle, where its precision,
recall, and F1-score dropped to zero. This suggests that
AST, which assigns a single label per segment, strug-
gles in polyphonic scenarios where multiple sound events
overlap, leading to a total drop in performance for horn
detection when other, more dominant sources are present.
In contrast, while YOLO and CRNN also showed a con-
siderable drop in performance, they retained some detec-
tion capability for horns, with F1-scores of 0.15 and 0.17,
respectively. However, AST maintained a similar average
F1-score inside the vehicle due to its stronger performance
in siren detection, despite its inability to detect horns in
this scenario.

Although the results of the experiment suggest that
external microphone placement might be more effective
for detecting sirens and horns, it is important to note that
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Transformer YOLO CRNN
Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2
Outside Inside Outside Inside |Outside Inside Outside Inside|Outside Inside Outside Inside
P 058 080 065 000/ 082 036 037 0.16 | 028 0.14 0.21 0.10
Hom R | 096 087 038 000| 078 070 045 0.17 | 1.00 096 076 028
F1| 072 083 048 0.00| 080 047 041 0.17 | 044 024 033 0.14
77777 P| 08 1.00 1.00 1.00 | 065 076 097 061 | 047 037 046 0.76 |
Siren R | 0.76 038 054 0.18| 063 041 040 008 | 076 052 051 0.11
F1| 082 055 070 030 | 064 054 057 014 | 058 044 049 0.19
77777 P| 073 090 08 050 073 056 067 038 038 026 033 043 |
Avg. R | 08 063 046 009 | 071 056 043 0.13 | 08 074 0.64 0.19
F1| 077 069 059 0.15| 072 050 049 015 | 051 034 041 0.17

Table 1: Performance metrics (Precision, Recall, and F1-score) for horn and siren detection using AST, YOLO,
and CRNN models under two recording scenarios. Results are presented for both external and internal micro-

phones.

this study has excluded certain variables that could in-
fluence monitoring effectiveness in real-world conditions.
These variables include background noise from the exter-
nal environment, weather conditions, microphone wear,
among others. Additionally, for comprehensive monitor-
ing of the vehicular environment, it is crucial to consider
that monitoring the interior may be more complex from
the outside due to the vehicle’s inherent acoustic insula-
tion, compared to detecting external events from the in-
side. This suggests that future research could explore the
feasibility of implementing two microphone sources, each
focused on detecting specific events from the interior and
exterior, which could improve the accuracy and reliability
of the system in more complex scenarios.

4. CONCLUSIONS

This study evaluated the performance of three deep learn-
ing models—AST, YOLO, and CRNN—for detecting ex-
ternal acoustic events (such as sirens and horns) in vehic-
ular environments under various conditions. The results
highlight the significant impact of microphone placement
and background noise on detection accuracy. External
microphones generally provided clearer signals, leading
to better performance, while internal microphones were
more susceptible to degradation, particularly in noisy con-
ditions.

AST achieved the highest F1-score in controlled envi-

ronments but struggled with overlapping sounds, resulting
in a complete failure in horn detection inside the vehicle.
In contrast, YOLO and CRNN maintained some detection
ability in these challenging scenarios, although with lower
overall accuracy.

Future work should explore the models’ performance
in more complex tasks, such as detecting the precise onset
and duration of events, rather than merely classifying their
presence within fixed segments. Additionally, investigat-
ing multi-microphone fusion strategies could help miti-
gate the limitations observed with single-channel inputs.
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