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ABSTRACT

This study presents a data-driven methodology to esti-
mate transfer matrices modeling saxophone mouthpieces
based on their geometric parameters. A novel parametric
model was developed to generate more than 1000 unique
mouthpiece geometries. Key geometric features, such as
chamber and throat cross-sections, shape radii, and baf-
fle inclination angle, were varied to create the dataset.
The training data are generated through Finite Element
Method (FEM) simulations, from which transfer matri-
ces were extracted and approximated using Chebyshev
polynomials. Polynomial coefficients were then modeled
using fully connected neural networks to enable efficient
prediction. The results demonstrate the system’s ability to
accurately predict transfer matrix coefficients, highlight-
ing the potential of computational methods to enhance the
customization and design of specific elements of musical
instruments, such as mouthpieces.
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1. INTRODUCTION

The saxophone mouthpiece plays a crucial role in defin-
ing the tonal characteristics and playability of the instru-
ment [1-3]. The design of a mouthpiece involves bal-
ancing complex geometric parameters that influence air-
flow dynamics and, consequently, sound production [4,5].
This study focuses on the internal geometry of the mouth-
piece, particularly the throat, chamber, and baffle, which
significantly affect its acoustic properties [6].

Traditional evaluation methods for mouthpiece de-
signs often rely on physical prototypes and subjective
auditory assessments. These approaches are inherently
time-consuming and limited in their ability to explore
large design spaces [7, 8]. Recent advances in compu-
tational modeling and data-driven techniques in musical
acoustics [9, 10] present new opportunities to study and
optimize mouthpiece designs systematically.

In this work, we propose a parametric modeling
framework for saxophone mouthpieces, enabling the au-
tomated generation of a large dataset of internal cavity ge-
ometries. Finite Element Method (FEM) simulations are
employed to compute the corresponding acoustic transfer
matrices (TM) for each design [?,11]. Subsequently, neu-
ral networks are trained to capture the complex relation-
ships between geometric features and the resulting acous-
tic responses encoded in the transfer matrices.

Furthermore, the mouthpiece models are integrated
with a simplified saxophone body representation to inves-
tigate the effects of estimation errors in the transfer matri-
ces on the overall acoustic output. This analysis provides
insights into the sensitivity of the saxophone acoustics to
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the geometry of the mouthpiece and the accuracy of pre-
dictive models.

The insights gained from this study provide a founda-
tion for the design of mouthpieces customized to specific
acoustic preferences, paving the way for innovations in
saxophone performance and personalization [12].

2. GEOMETRIC MOUTHPIECE PARAMETERS

To establish the geometric framework for the saxophone
mouthpiece, we conducted a detailed analysis of a wide
range of commercially available models. Drawing on the
studies of [13] and [12, 14], we identified key geomet-
ric parameters that capture the essential variations among
different mouthpiece designs. The primary objective was
to define a minimal yet versatile set of parameters capa-
ble of approximating a broad spectrum of mouthpiece ge-
ometries, ensuring adaptability across various styles and
manufacturers.

Although this study focuses specifically on the alto
saxophone mouthpiece as a representative case, the pro-
posed methodology is generalizable and can be extended
to other saxophone families, including soprano, tenor, and
baritone models.

Given the large number of variables that influence
mouthpiece performance, our design strategy prioritizes
parameters that directly affect internal airflow and acous-
tic response. Based on the acoustic modeling framework
presented in [15], we intentionally excluded variables as-
sociated with the reed tip interface from the parametric
space. Instead, the reed channel is simplified and approx-
imated as a rectangular window to reduce complexity and
computational cost.

A geometric schematic of the internal cavity of the
mouthpiece model is shown in Fig. 1. To characterize the
chamber and throat, we define parameters that describe
their cross-sectional dimensions and shapes. Specifically:

* the heights of the cross-sections are denoted as s,
(chamber) and s; (throat);

* the shape radii are denoted as r. (chamber) and
r(throat), which determine the curvature of the
cross-sections by adjusting the fillets.

For the baffle, the parameter « is introduced to rep-
resent the angle of its inclination. A lower value of «
corresponds to a narrower mouthpiece, and a larger baffle
is typically associated with a brighter and more focused
sound. In contrast, a larger « results in a wider mouth-
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Figure 1: Scheme of the saxophone mouthpiece ge-
ometry. The left diagram shows a longitudinal cross-
section highlighting the baffle angle o and internal
cavity design, while the right diagram depicts the
transverse cross-section (B-B plane) illustrating the
chamber and throat dimensions s., s; and their re-
spective shape radii r¢, ;.

piece and a lower baffle, often producing a darker and
warmer tone.

It is important to recognize that the geometric pa-
rameters are constrained by the physical interfaces with
other saxophone components, particularly the neck and
the reed. Features such as the table, lay, tip opening, tip
rail, and side rails must remain fixed to ensure compat-
ibility with the wide variety of commercially available
reeds. These constraints were explicitly integrated into
the model to ensure that all generated geometries remain
practical and compatible with standard saxophone config-
urations, preserving usability across a wide range of in-
struments and performance setups.

3. TRANSFER MATRIX METHOD

To describe the acoustic characteristics of the mouthpiece
model, we employ the Transfer Matrix Method (TMM)
introduced in [15]. The TMM is widely used in the study
of wind instrument resonators (e.g., [11, 16, 17]), and is
based on two-port acoustic theory. This theory models
the reference acoustic system as a linear network with in-
terconnected two-port elements, following the framework
outlined in [15].

Specifically, a region between two ports is treated as
a “black box” characterized by a 2 x 2 transfer matrix
T(w), expressed as

T11 (w)
T(w) = |:T21(CU)

such that the relationship between the input and output

ik 1)

T22 (O.))
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Tip window

Figure 2: Finite element (FE) mesh of the saxo-
phone mouthpiece used for acoustic analysis. The
green arrows indicate the positions of the input and
output ports, where acoustic pressure and volume ve-
locity (P;, U;,P,, U,) are measured for transfer ma-
trix derivation.

acoustic variables is given by:

[ RNt

Here, w = 27 f is the angular frequency (in rad/s), while
P;(w), U;(w) and P,(w), U,(w) represent the input and
output acoustic pressure (in Pa) and volume velocity (in
m3/s), respectively.

The transfer matrix of the mouthpiece is derived un-
der the assumptions of linearity and passivity, which are
valid when the sound source is decoupled from the mouth-
piece. The reed’s vibration is excluded, allowing the
excitation and the nonlinearity to be modeled indepen-
dently. Only propagating modes are considered, with a
plane wave at the input and negligible output discontinu-
ities. In addition, internal discontinuities are assumed to
be far enough from the output plane to avoid interference.
In Fig. 2 the positions of the input and output ports are
shown in an example model. To derive T, the two-load
method proposed in [15] is employed. Then the follow-
ing matrix equation can be solved to obtain the four terms
of the TM

Pl ozeul o 0 T P}
0 0 Pi ZUM |Tie| | ZeUE 3
P? ZzeUZ2 0 0 Tor| | P?|° )
0 0 P2 ZUZ| |Twe ZeU?

where we dropped the argument w for readability, and the
superscripts 1 and 2 represent two different boundary con-
ditions, with the loads set as a theoretical unflanged radia-
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tion impedance and the characteristic impedance, respec-
tively.

4. DATASET CREATION

To generate a comprehensive dataset of mouthpiece pa-
rameters, we design the parametric model of the air cavity
using COMSOL Multiphysics.

For our dataset, we generated five uniformly dis-
tributed values for each of s, s;, and a within the pre-
defined ranges shown in Table 1. To represent various
cross-sectional shapes of the chamber, we computed three
values for r. and r; relative to s, and s; using scaling fac-
tors that correspond to square, medium-smooth, and cir-
cular shapes. These parameter ranges and values, derived
from [14], were informed by an analysis of the geometric
characteristics of widely used commercial mouthpieces.

By combining these parameters, we obtained a
dataset consisting of 1125 unique mouthpiece models.
Each combination represents a plausible design variation
in terms of throat and chamber shapes, as well as baffle in-
clinations. As an example, Fig. 3 illustrates four different
mouthpiece models generated using this approach. These
models demonstrate the impact of parameter variations on
the throat and chamber cross-sections and the angle of the
baffle.

Parameters Ranges Values
Sc [6.0 : 8.5] [mm]
St [6.0 : 8.0] [mm]
o [-5: 25] [deg]
Te [0.05, 0.5, 1] x s,
T4 [0.05, 0.24, 0.49] x s

Table 1: The ranges or values of the selected geo-
metric parameters. Five values in the ranges show
in the table are randomly generated for s., s; and .
Three different values with respect to each related
cross section radii are generated for r. and 7.

4.1 Geometry Refinement

When musicians play the saxophone, it is common prac-
tice to adjust the depth of insertion of the mouthpiece into
the neck to fine-tune the pitch. This mechanical coupling
is critical for achieving proper intonation. To replicate this
tuning behavior in our simulations, we adjust the length of
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Figure 3: Four different parametric mouthpiece
models obtained by different combinations of values
of the selected parameters.

the coupling tube using a lumped acoustic model, ensur-
ing that the system accurately reflects the tuning condi-
tions.

The input impedance of the cylindrical equivalent of
the mouthpiece is defined as Z(w) L [15], where

pc?

Vim
¢ is the imaginary unit and V,,, is the total volume. This

relationship shows that maintaining a consistent volume
of the mouthpiece in different models helps to preserve a
similar resonance frequency. To match the neck diameter
of the saxophone (1.7[cm] as measured on a Selmer Se-
ries III), the radius of the neck coupling’s cross-section is
fixed. Thus, to maintain the same volume of the mouth-
piece, we adjust the length of the coupling tube accord-

ingly.

4.2 FEM Simulation

Simulations are performed using COMSOL Multi-
physics® software, employing the Pressure Acoustics,
Frequency Domain finite element method (FEM) [18] to
model the acoustic behavior of the air column within the
saxophone mouthpiece. The accuracy and computational
efficiency of this approach for wind instrument modeling
have already been validated in previous studies [15].

As detailed in Section 3, two simulation scenarios are
performed by applying distinct boundary conditions at the
output: one with unflanged radiation impedance and the
other with characteristic impedance. This setup enables
the extraction of the elements of the transfer matrix nec-
essary for subsequent acoustic analysis. A 1kPa pressure
source is applied at the input tip window of the mouth-
piece, depicted in Figure 2. The studied frequency range
is [10,8000] Hz with a step of 50 Hz. The maximum
mesh element size i ¢/ finaxz/5, With fp,4. the highest
frequency.
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We then extracted the TMs from the
FEM simulations by solving (3), resulting in
T [Ti(f) (w)] € CI9xU2X4" where 159 is the
number of sampled frequencies w, 1125 is the num-
ber of geometry models ¢, and we stacked them in 4
elements 75 of TM T in (1). The obtained dataset is
available at https://kaggle.com/datasets/
6c7d1b3c947d395b6d7954f9a628294e262baf

fO0a7beed54bbl19e8545ce9476.

5. DATA-DRIVEN RECONSTRUCTION
5.1 Feedforward Neural Networks

We employed four Feedforward Neural Networks (FNN)
to model the relationships between the geometric param-
eters and the four corresponding TM terms. The input
consists of x = [s, s¢, @, %, ?}T € R5. To reduce
the dimensionality of the neural ntetwork output, inspired
by the approach discussed in [15], we used 10th-order
Chebyshev polynomial coefficients for T, resulting in 11
complex parameters arranged in a vector pgf). An exam-
ple comparing T with its reconstruction from the polyno-
mial approximation is presented in Fig. 4, demonstrating a
good alignment and providing confidence in the accuracy
of the polynomial fitting. For each neural network 7, the
output is designed as y;; = [R(p)",3(p)"]" € R%,
obtained by first converting P into a real-valued repre-
sentation. The resulting vector is then normalized using
the mean value across various mouthpiece models in the
training dataset. Thus, given a set of geometric measure-
ments x, the ¢jth FNN must output a corresponding set of
staked Chebyshev polynomial coefficients y;; to define
the ¢jth entry function of TM T (w).

Indeed, the dataset is divided into training, valida-
tion, and test sets with proportions of 70%, 15%, and
15%, respectively. This ensures that the model is not
only trained effectively, but also evaluated for general-
ization on unseen data. The employed FNN architec-
ture is shown in Fig. 5, featuring a single hidden layer
with 10 neurons. The tanh activation function is used in
the hidden layer to introduce nonlinearity, while no ac-
tivation function is applied to the output layer. The loss
function is defined as the mean squared error (MSE) be-
tween the neural network output and the exact target val-
ues Y. The Levenberg-Marquardt backpropagation algo-
rithm was utilized for optimization. The MATLAB Deep
Learning Toolbox is used for the implementation.
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Figure 4: An example of magnitude and phase of
TMs T, comparing FEM and polynomial approxi-
mation results.

5.2 Linear Regression

As a comparison with the proposed data-driven method,
we use a linear regressor. The linear regression assumes
that the relationship between the dependent variable Y
and the independent variable X = [x], V¢ € Training set
(described in 5.1) can be expressed as

Y =Xp+¢, “)

where f3 is the vector of regression coefficients; ¢ € R™* 1
is the vector of random errors, assumed to follow a normal
distribution with zero mean and constant variance.

The vector of coefficients (3 can be estimated as

g=XTx)"'xTy. (5)

6. RESULTS
6.1 Closed Mouthpiece and Coupled System

The input impedance of the mouthpiece with a closed ter-
mination can be determined by setting the end impedance
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to infinity and evaluating it using the mouthpiece TM.
Furthermore, to assess the influence of the mouthpiece on
the saxophone body, we model the main bore of the sax-
ophone as a truncated cone and couple it with the mouth-
piece. The truncated conical resonator has an input radius
of 8.05 mm, which is equal to the radius of the mouth-
piece neck coupling. The apex angle is 0.035rad, and
the truncated cone length is 0.72 m, which is aligned with
the study in [19]. The input impedance is then derived
accordingly with the unflanged radiation condition at the
output. The elements of the transfer matrix for the trun-
cated conical duct, T“°"*¢, are determined by Equation (5)
in [20].

6.2 Metrics

To evaluate the performance of the proposed method, we
employ three different metrics that are typically used in
the literature [15]: the Normalized Mean Square Error
(NMSE), the Frequency Shift (FS), and the coefficient of
determination R?.
Given a generic impedance Z4 and a ground truth
impedance (i.e. ZrgMm) the NMSE of Z 4 is defined as
NMSE(Za) = [|1Za — Zeeml*/|| Zeeml?, (6)
such that the discrepancy between estimated and refer-
ence impedance is quantified. FS expresses the deviation
between the peak frequencies of two different functions
and is defined as
FSk(Za) = f(Za) = fr(Zrem)|/ fe(Zrem),  (7)
where & denotes the peak index and fy(-) represents the
resonance frequency of the magnitude peak of the given
argument.

The coefficient of determination R? is used to evalu-
ate the prediction accuracy. It is defined as

SSI‘CS

RP=1-
SStr’

®)

where SS.s = 22[21 (yn — y”n)2, yn is the value of
the dependent variable for observation n, ¢, is the pre-
dicted value from the model for observation n, SSy, =
27]:[:1 (yn — )%, and 7 is the mean of the observed val-
ues of y. R? values range from O to 1, with values closer
to 1 indicating a better fit of the model to the data.
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Figure 5: FNN architecture designed for modeling a single TM term.

6.3 Discussion

Performance metrics for input impedance predictions us-
ing both the FNN and linear regression models are sum-
marized in Table 2. In all cases, the FNN consis-
tently outperforms linear regression. Furthermore, Fig. 7
presents the coefficient of determination (R2) for the input
impedance of the coupled system, confirming the superior
predictive accuracy of the FNN model.

An example of the input impedance comparison is
shown in Fig. 6, where the FNN predictions closely match
the FEM results, while linear regression exhibits notable
deviations. These results reveal the presence of a non-
linear relationship between the mouthpiece geometric pa-
rameters and the corresponding TM elements. This un-
derscores the importance of employing nonlinear models
to adequately capture the relations between the geometric
model parameters and the acoustic response.

FNN | Linear

NMSE(| Zin.couplea]) [dB] | -55.6 | -39.9
NMSE(|Zin|) [dB] -81.1 | -57.1
FS1(Zin) % 0.36 | 4.10
FSo(Zin) % 024 | 042
FS3(Zin) % 0.36 | 2.07

S FS(Zin)/3 % 0.32 | 2.19

Table 2: Comparison of performance metrics for
FNN and Linear models, including NMSE and FS
averaged for all the test dataset results.

7. CONCLUSION

In this study, we construct a synthetic dataset using a
parametric model of saxophone mouthpieces that results
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in 1125 different designs. We consider the parameters
related to the internal airflow cavity: the cross-section
heights and radii of chamber and throat, and the angle
of baffle inclination. The TMs of these models are then
retrieved using the Finite Element Method (FEM). Ad-
ditionally, a truncated cone is coupled with the paramet-
ric mouthpieces to serve as a simplified representation
of the main bore of the saxophone. The acoustical in-
fluence of the mouthpiece is investigated on the basis of
the input impedance spectra, which highlights the mouth-
piece emphasis or modulation effect. Moreover, compar-
ative analyses of the input impedance spectra reveal po-
tential underlying relationships between the mouthpiece
parameterization and the characteristics of the instrument.
The presented dataset has significant potential for further
research on the acoustic behavior of saxophone mouth-
pieces and sound generation. These studies can contribute
to advances in the design of saxophone mouthpieces.
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