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U. Peter Svensson6 Marcus Maeder1 Steffen Marburg1 Elias Zea2∗

1 Chair of Vibro-Acoustics of Vehicles and Machines, Department of Engineering Physics
and Computation, Technical University of Munich, Germany

2 The Marcus Wallenberg Laboratory for Sound and Vibration Research, Department of
Engineering Mechanics, KTH Royal Institute of Technology, Sweden

3 Acoustical Engineering Program & Civil Engineering Graduate Program,
Federal University of Santa Maria, Brazil

4 Acoustic Technology, Department of Electrical and Photonics Engineering,
Technical University of Denmark, Denmark

5 Siemens Industry Software NV, Leuven, Belgium
6 Department of Electronic Systems, Norwegian University of Science and Technology, Norway

ABSTRACT

A residual neural network is proposed to predict the sound
absorption of an infinite rigidly-backed porous material
from a classical two-microphone measurement above a fi-
nite porous sample. The network is trained using the mi-
crophones’ transfer functions generated by a boundary el-
ement model (BEM), with a Delany-Bazley-Miki material
model as a boundary condition. The network is validated
numerically with BEM simulations and experimentally
using two-microphone measurements of a baffled porous
absorber of dimensions 60 cm×60 cm and 30 cm×60 cm,
subject to various source locations. The results indicate
that the network can significantly enhance the predictive
capabilities of the classical two-microphone method. The
suggested approach shows potential for accurately esti-
mating the sound absorption coefficient of acoustic ma-
terials in realistic operational conditions.
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1. INTRODUCTION

The ability to characterize the absorption properties of ab-
sorbing materials is essential for a wide range of engi-
neering applications. Standardized methods such as the
impedance tube method [1, 2] or the reverberation cham-
ber method [3] are limited to normal and random inci-
dence, respectively. In contrast, angle-dependent absorp-
tion data can be obtained with in situ and free-field meth-
ods [4]. These methods typically rely on measurements of
the sound pressure (and/or particle velocity) in the sam-
ple’s vicinity [5–10] and on an analytical model of the
sound field above the sample [4]. Existing models are
based on plane-wave [5,11,12] or spherical-wave [6,9,10]
assumptions and generally assume that the sample is infi-
nite in extent. This assumption does not hold in measure-
ments of realistic samples, and edge-diffraction effects re-
sult in erroneous absorption properties [13–19].

Several methods for modeling and mitigating edge
diffraction effects have been proposed in the literature
concerned with characterizing acoustic materials [18, 20–
22]. In particular, a number of studies have employed
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machine-learning approaches to mitigate the edge effect
based on measurements with an array of microphones
[23, 24]. Other work utilizes machine learning tech-
niques for efficient work with the impedance tube [25] and
physics-informed neural networks [26].

This study introduces a deep-learning-based two-
microphone approach to predict the angle-dependent
sound absorption coefficient of finite-sized acoustic sam-
ples. Such an approach is of interest in that it only requires
common instrumentation and a straightforward measure-
ment procedure (the well-established two-microphone
method [5]), unlike the more cumbersome approach
in [23]. The proposed method uses a 1D residual neural
network trained to predict the angle-dependent sound ab-
sorption coefficient from transfer function measurements.
The network is trained and validated based on BEM-
generated data [18, 23]. The validity of the proposed ap-
proach is examined numerically and experimentally using
fibrous samples of different sizes and orientations. The
results are compared with impedance tube measurements
and analytical predictions from the two-microphone mea-
surements.

2. METHODOLOGY

2.1 Datasets

2.1.1 Numerical datasets

For training and validation purposes, a numerical dataset
is generated with a boundary element method (BEM) [18],
following a procedure similar to that of [23]. The two mi-
crophones are located at 1 cm and 3 cm above the sample,
which is assumed to be flush-mounted on a rigid baffle.
The material properties are described based on a Delany-
Bazley-Miki model [27]. The remaining BEM param-
eters span relevant values commonly found in practical
scenarios: the sample sizes span from 20 × 20 cm2 to
1 m2, the thicknesses d ∈ [5, 200] mm, the flow resis-
tivity σ ∈ [5, 100] kNs/m4, the source distance ∥rq∥ ∈
[1.2, 1.8] m, the source azimuth ϕ ∈ [0, 360) deg, and the
source elevation θ ∈ [0, 80] deg. The frequency range
is f ∈ [100 : 10 : 2000] Hz. 50 000 instances were gen-
erated and split into 80 : 20 for training and validation,
and an additional 3 000 unique instances (not seen during
training) were generated to test the network. More details
on sampling these parameters can be found in [28].

2.1.2 Experiental datasets

We also performed eight two-microphone measurements
with glass wool samples, model Focus A2 by Saint-
Gobain Ecophon, of two sizes (60 × 60 cm2 and 30 ×
60 cm2) to validate the method experimentally for vari-
ous source distances and incidence angles. The samples
were flush-mounted in baffles of medium-density fiber-
board (MDF) panels. As in the BEM-generated train-
ing set, the microphones (model G.R.A.S. 40 PH) were
placed 1 and 3 cm above the sample, and an omnidirec-
tional sound source (model Monacor KU-516) emitted a
10-second-long sine sweep. A Brüel & Kjær Type 2706
amplifier and a National Instruments NI eDAQ-9178 dig-
ital acquisition system were used to collect the relevant
time signals for postprocessing. The reader is referred
to [28] for more details on these experiments.

2.2 Proposed neural network

A 1D residual neural network is designed to take two input
features: (i) the complex-valued transfer function between
the two microphones, and (ii) the source elevation angle
θ, to predict the frequency-dependent sound absorption
coefficients. The real and imaginary parts of the trans-
fer function are treated as separate feature channels. At
the same time, the elevation angle is skip-connected and
concatenated with the latent space resulting from the net-
work’s convolutional layers. For precise network design
and architecture details, the reader is referred to [28].

The network is trained for 250 epochs, using the mean
squared error (MSE) as the loss function. The optimiza-
tion was performed using an Adam optimizer with mini-
batches of 64 samples and a weight decay of 10−3 [29].
The learning rate was set to 10−3 in the first 10 epochs
and reduced exponentially by 0.9 from the 11-th epoch
onwards. An early stopping criterion was imposed to pre-
vent overfitting. In general, it is shown in [28] that training
converges around 125 epochs.

3. EXPERIMENTAL HIGHLIGHTS

The network predictions were first evaluated using only
numerical data, that is, in the same form used for training.
As mentioned in section 2.1, 3000 examples unseen by the
network during training were used for testing the predic-
tions. With an MSE of 8.42 · 10−5, the network provides
accurate predictions of the sound absorption coefficient in
various scenarios.
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Figure 1 shows the network’s prediction for the two
measured glass-wool samples. Figs. 1a and 1d show
two example results for normal wave incidence, with the
curves ”Miki model” viewed as the reference results. The
network predictions underestimate the absorption coeffi-
cient somewhat, by less than 0.05 for the larger sample
(Fig. 1a) and by less than 0.10 for the smaller sample
(Fig. 1d).

Physical absorber samples were measured in an
impedance tube to offer typical experimental reference re-
sults. Results are shown in Figs. 1b and 1e, with predic-
tions based on simulated measurements on a smaller sam-
ple, Fig. 1b, and a larger sample, Fig. 1e. Note that some-
what longer source distances were used in Figs. 1b and
1e, compared to Figs. 1a and 1d. Again, the predictions
by the network seem to underestimate the absorption co-
efficient somewhat, but the agreement is very good for the
larger sample. It is worth noting that the impedance tube
measurement values deviate somewhat above 1.5 kHz and
may not be considered as true reference results.

Finally, traditional two-microphone measurement re-
sults for a smaller and a larger sample are presented
in Figs. 1c and 1f, together with network predictions.
Slightly longer source distances were used for this final
comparison. For such small samples as were tested here,
the finite-size effects are substantial, and it is clear that
the network predictions suppress these interference effects
completely. For instance, owing to the intrinsic nature of
the training of the network, the method inhibits the emer-
gence of negative absorption values.

Finally, the consistency of the network predictions for
varying source distances should be emphasized, as only
marginal differences within the rows can be observed.

4. CONCLUSION

Based on a deep-learning-based two-microphone ap-
proach, we predict the angle-dependent sound absorp-
tion coefficient of finite-sized acoustic samples utiliz-
ing well-established measurement procedures and a one-
dimensional residual neural network. More concretely,
appropriate boundary element method simulations, as-
suming a Delany-Bazley-Miki material model, provide
the necessary database for the network training and valida-
tion within a frequency range of interest between 100Hz
and 2 kHz. In addition, suitable measurements of fibrous
samples of different sizes and orientations provide the
transfer functions to validate the methodology. Compar-
ing the results of the analytical model, the impedance tube

measurements, and the prediction based on the neural net-
work, one finds a high prediction quality concerning the
analytical model and the impedance tube measurements.
Furthermore, the neural network predictions toward the
traditional two-microphone method are free from the typ-
ical edge diffraction effects, providing a suitable strat-
egy for reliable absorption coefficient estimation. The
proposed method aims to help engineers in room acous-
tics and material property identification accurately pre-
dict the sound absorption coefficients based on the well-
known two-microphone measurement procedure without
the common edge-diffraction errors.
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Figure 1. Predictions of the sound absorption coefficient for two samples at normal wave incidence and differ-
ent source distances to the sample. Compared to Miki model with estimated flow resistivity of 54.7Nsm−4 (a
& d), impedance tube measurement (b & e) and the traditional two-microphone method (c & f).
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