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ABSTRACT

The gearboxes are vital components of most drive trains.
The operation of gearboxes in applications such as wind
turbines and manufacturing tools is characterised by sud-
den changes in loads, which may lead to variations in
operational speed. Hence, visualising system dynamics
in varied conditions becomes vital to operation planning.
The role of the digital twins in industrial applications has
led to streamlined virtual learning of the system dynam-
ics. Further, the mathematical model-based digital twin is
faster in computation than its counterpart, the finite ele-
ment model, thus meeting the demand for real-time sys-
tem simulations. The study presents a digital twin based
on a mathematical model for simulating the vibration re-
sponse of a fixed-axis single-stage spur gearbox operating
at variable speed. A detailed study of the simulated vi-
bration response and a detailed discussion of its time, fre-
quency, and time-frequency domains are also presented.

Keywords: Dynamic model, vibration analysis, gearbox,
digital twin

1. INTRODUCTION

Lack of proper maintenance is the most prominent reason
for gearbox failures [1]. Further, the failure of gearboxes
may lead to extensive hazards ranging from operational
downtime to loss of personal life [2]. Historically, gear-
box failure has been the primary cause of aviation hazards.
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Notably, gearbox failures of the Boeing-made V-22 Os-
prey and the Airbus-made super-puma family helicopters
have resulted in multiple fatal accidents over the years,
with loss of life amounting to dozens [3]. Hence, visu-
alising the gearbox’s operation and the associated system
dynamics is paramount for operation planning [4, 5]. The
analyst may simulate varying operational conditions of the
gearbox in a virtual system to understand the safe opera-
tional parameters. Such virtual visualisations are aided by
a Digital twin (DT) capable of simulating the operational
characteristics of the gearbox in a display unit.

A vast range of research addresses the DT analysis
by Finite element modelling (FEM). However, the FEM
is computationally intensive, requiring dedicated worksta-
tions and associated equipment. The FEM-based DTs are
thus limited to industrial units that may afford such costly
tools for operational optimisation. Most industrial units
and primary employment providers in the developing and
under-developed nations are categorised as micro, small,
and medium enterprises (MSMEs). The non-availability
of advanced algorithms for optimised operations signifi-
cantly hinders developing nations’ inclusive progress. As
such, the dynamic model-based DTs that provide low-
cost computation may be more suited to the context of
MSMEs [6].

Researchers have tried to generate a dynamic model-
based DT for gearboxes at various degrees of freedom [7].
Patel and Shakya demonstrated a model capable of ad-
dressing the variable speed but limited the study to signal
processing of the simulated vibration response [8]. The
present study explores the characteristics of the simulated
vibration response during the presence of the fault, as well
as during variations in speed, a vital aspect of the digital
twin’s onboard application.
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Figure 1: Schematic representation of vibration response during gear tooth meshing
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Figure 2: Gear mesh at different instants

2. VIBRATION RESPONSE SIMULATION

The vibration response-based analysis has emerged as the
norm in contemporary gearbox monitoring practices. The
wide acceptance of vibration analysis is due to its abil-
ity to reflect highly correlated fault information swiftly.
The vibration response of a structural element is gov-
erned by its Impulse response function (IRF), which is
dependent on the system’s dynamic properties. The Fig-
ure 1 illustrates the instantaneous vibration response ([x])
generation during the gear tooth meshing under the in-
fluence of external and internal forces ([Ψ]). At any in-
stant, the meshed gear tooth may be assumed as a struc-
ture with a set of dynamic properties dependent on the
combined meshed geometry of the interacting gear tooth.
The dynamic properties such as the mass ([M ]), stiffness-
coefficient ([K]), and damping-coefficient ([C]) influence
the IRF of the said structure. However, the meshing of
the gearbox generates complex meshed structures and dy-
namic forces at every instant, generating a complex vi-
bration response over time (Figure 2). Nonetheless, un-
derstanding the vibration response is fundamental to the
study. The following sections of the current study anal-
yse the gearbox vibration response using the proposed dy-
namic model. The vibration response’s time, frequency,
and time-frequency domain characteristics are studied.

3. THE DYNAMIC MODEL

The dynamic property most influential in the vibration re-
sponse generation is the instantaneous stiffness during the
gear tooth meshing, termed the time-varying mesh stiff-
ness (TVMS). The dynamic model consists of two inte-
gral parts: the TVMS calculation and the lumped-mass
dynamic model. The root-crack growth under different
speed variations is analysed in the present discussion to
understand the complex nature of gearbox vibration re-
sponse under fault growth and operational variations.

3.1 TVMS calculation

The dynamics of a single tooth during the gear mesh is as-
sumed to be that of a cantilever beam under a moving load
(Ψ). The Ψ results in a set of deformation modes of the
gear tooth governed by the associated stiffness. Specifi-
cally, the gear tooth undergoes axial deformation, bend-
ing and shearing, fillet foundation deflection, and contact
deformation. The present analysis adopts the Mohammed
et. al. [9] model for the axial, bending, and shear stiffness
(Ka, Kb, and Ks); Sainsot model [10] for fillet founda-
tion stiffness (Kf ); and Yang model [11] for the Hertzian
contact stiffness (Kh).

The strain energies (Ua, Ub, and Us) stored in the gear
tooth due to the axial, bending, and shear deformation are
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Figure 3: Calculated mesh stiffness for contact ratio of 1.5

Figure 4: Instantaneous shaft speed and corresponding mesh stiffness of the gear operating at 15% speed
fluctuation.
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as follows:

Ua =
Ψ2

2Ka
=

∫ d

0

Ψ2
a

2EAX
dX ,Ψa = Ψcos(θ1) (1)

Us =
Ψ2

2Ks
=

∫ d

0

Ψ2
b

2EAX
dX ,Ψb = Ψsin(θ1) (2)

Ub =
Ψ2

2Kb
=

∫ d

0

J2

2EIX
dX ,

J = [Ψb.(d−X)]− [Ψa.h]

(3)

Here, the variables h, d, and X are associated with the
gear tooth geometry and the point of contact. The E and G
are the elastic and shear modulus. The IX and AX are the
moments of inertia and cross-sectional area of the tooth
section at a distance of X . The IX and AX are calculated
as follows:

IX =

{
1
12 (hX + hX)

3
db; hx ≤ Ho

1
12 (hX +Ho)

3
db; hx > Ho

(4)

AX =

{
(hX + hX) db; hx ≤ Ho

(hX +Ho) db; hx > Ho

(5)

Here, Ho is the geometric parameter associated with the
crack.

Further, the fillet foundation stiffness (Kf ) and the
Hertzian contact stiffness due to the Ψ is calculated by the
following equation:

1

Kf
=
cos2(α1)

bE

{
L∗

(
d

Sf

)2

+M∗
(

d

Sf

)
+

P ∗ (1 +Q∗ tan2(θ1)
) (6)

1

Kh
=

4(1− ν2)

πEb
(7)

Here b is the tooth width, and Sf is the tooth thickness
at the fillet foundation. The L∗, M∗, P∗, and Q∗ are
coefficients calculated empirically.

The total mesh stiffness (Km) for the gear pair 1 at
any instant is given by the following equation 2 :

1

Km
=

(
1

Kag
+

1

Kbg
+

1

Ksg
+

1

Kfg
+

1

Khg

)
+(

1

Kap
+

1

Kbp
+

1

Ksp
+

1

Kfp
+

1

Khp

) (8)

1 Note that the calculation shown here is for a single gear pair.
Twice the value may be taken when multiple gear pairs are in
mesh, i.e. when the contact ratio is more than one.

2 The annotations p represents the pinion and g represents the
gear.

The mesh stiffness for healthy and cracked gear tooth
pair is simulated using the gear parameters given in [8]
(Figure 3). It may be noted that the stiffness reduces
with the increase in crack length. Also, at angular po-
sitions of multiple gear meshes, the Km is higher due
to the combined geometry. The period of engagement
and disengagement of the gear tooth pair varies accord-
ing to the instantaneous speed. The meshing is faster
at higher speeds, while the meshing is slower at lower
speeds. Hence, the mesh stiffness follows a scaling pat-
tern driven by the speed of the instantaneous shaft. Figure
4 shows the speed profile, corresponding mesh stiffness
and enhanced portions of the mesh stiffness time snippets.
The scaling effect of the mesh stiffness across the time
domain may be visualised by the period of engagement
and disengagement at different speeds (15Hz, 18Hz and
12Hz).

3.2 Lumped mass model

A six-degree-of-freedom lumped mass model is used for
the analysis [8]. Figure 5 shows a schematic representa-
tion of the model. A set of ordinary differential equations
governs the dynamics of the said system. The equations
of motion of the model are as follows:

Ig θ̈g = Tfg + rgW0 + Tg (9)

Ipθ̈p = Tfp − rpW0 + Tp (10)

mg v̈g + cgv v̇g + kgvvg = −W0 (11)

mpv̈p + cpv v̇p + kpvvp = W0 (12)

mgüg + cguu̇g + kguug = −Ψ (13)

mpüp + cpuu̇p + kpuup = Ψ (14)

W0 =Cm(rpθ̇p − rg θ̇g + v̇p − v̇g)

+Km(rpθp − rgθg + vp − vg)
(15)

In the above-given equations, u, v, and θ represent
the horizontal, vertical, and angular displacements; m is
the mass, and r is the base radius; c and k represent the
damping coefficient and stiffness of the gearbox bearings;
T represents the input/output torque; Tf represents the
frictional torque; Km and Cm represent the mesh stiff-
ness and the mesh damping coefficient respectively. The
following paragraphs analyse the vibration response gen-
erated by the above-described dynamic model. Analyses
based on time, frequency, and time-frequency domains are
presented. Two cases of analyses are presented: Case 1,
crack growth model and Case 2, speed variation model.
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Figure 5: Six degree-of-freedom lumped mass
model of a single-stage fixed-axis gearbox

The Case 1 is analysed using responses generated for Km

values given in the Figure 3. A sinusoidal variation with
fluctuations 0%, 1%, 2.5%, and 5% are considered for
Case 2.

4. RESULTS AND DISCUSSION

Analyses based on time, frequency, and time-frequency
domains are presented in the following paragraphs. Two
cases of analyses are presented: Case 1, crack growth
model and Case 2, speed variation model. Case 1 is anal-
ysed using responses generated for Km values in Figure
3. A sinusoidal variation (Figure 6) with fluctuations (Fl)
0%, 1%, 2.5%, and 5% are considered for Case 2.

4.1 Time domain analysis

The time domain representations of the vibration response
generated for both cases are shown in Figures 7 and 8. The
crack growth model shows the transient response in faulty
gear mesh instances. Further, the transients correspond
to the diminished stiffness of the meshed tooth pair, as
shown in Figure 3. It may be noted that the damping of
transient response after the impact of the faulty gear pair
meshing has shown visible Amplitude Modulation (AM)
(as shown in Figure 7). However, the direct visualisation
of fault information from the time domain is impossible

Figure 6: Speed variation for the simulation model

for very early faults. The said conundrum is multi-fold for
real-life systems where external noise, sub-component vi-
brations, and transfer path effect mask the sensor-acquired
vibration response. The variation in tooth contact force
during the speed variation has resulted in a correspond-
ing variation in the vibration response for Case 2 3 . AM
corresponding to the speed profile is apparent only in the
vibration response corresponding to higher speed fluctua-
tions. Intuitively, since the angular displacement is non-
constant during the rotation of the gear pair, Frequency
modulation (FM) is also expected in the response.

4.2 Frequency domain analysis

The frequency domain representation is a global illustra-
tion of the energy distributed among the constituent fre-
quencies of the vibration response. The basis of the fre-
quency domain representation is the Fourier transform.
The Fourier transform facilitates any function to be rep-
resented as a combined set of scaled sinusoidal functions
at different frequencies and phases. The Fourier transform
of the vibration response (x(t)) is as follows:

x̂(ω) =

∫ ∞

−∞
x(t)e−iωtdt (16)

Theoretically, the gear pair meshes at constant operational
speeds at a constant frequency, termed the Gear Mesh Fre-
quency (GMF) 4 . Hence, the vibration responses will have
a higher energy concentration at the GMF harmonics. Fur-
ther, the gear tooth bends at every gear mesh. Hence, a

3 The variation in shaft speed corresponds to variation in
power transmission. Correspondingly, the torque load changes
with respect to the speed variation.

4 GMF is the fault frequency (f0) for gearboxes.
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Figure 7: Time domain representation of the dynamic model simulated vibration response for different crack
size

Figure 8: Time domain representation of the dynamic model simulated vibration response for different speed
fluctuation

slight variation in transmission ratio at the tooth meshes
leads to FM, which, along with the AM due to gear mesh
impacts, leads to sidebands around the GMF. Further, the
AM-FM at the faulty gear pair mesh is higher than the rest
due to the relatively lower Km. Hence, the presence of the
fault leads to disturbance in the sideband energy, which
is apparent in the frequency domain representation of the
crack growth model’s vibration response (Figure 9a). The
basic assumption of frequency domain representation is
the constant operational speed. As such, the frequency do-

main representation of the vibration response of gearboxes
operating at variable speeds results in a smeared spectrum
(Figure 9b). Specifically, the global GMF variation across
the gearbox’s operation varies; hence, the vibration re-
sponse energy gets smeared across those frequencies. Fur-
ther, a decrease in the spectral amplitude is also apparent,
possibly due to the smearing of energy across the earlier
frequencies concentrated at singular frequency values 5 .

5 Note that the total vibration energy stays conserved.
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(a) Frequency domain representation of the dynamic model
simulated vibration response for different crack sizes.

(b) Frequency domain representation of the dynamic model
simulated vibration response for different speed fluctuations.

Figure 9: Frequency domain representations of sim-
ulated vibration responses for different conditions.

4.3 Time-frequency domain analysis

In contrast to the frequency domain representation, a
global representation of vibration response energy across
the frequencies, the time-frequency domain representa-
tion illustrates a temporal localised frequency distribu-
tion. The time-frequency domain is the frequency domain
amalgamation of time-windowed signal sections of the vi-
bration response.

(a) Time-frequency domain representation of the dynamic
model simulated vibration response for different crack sizes.

(b) Time-frequency domain representation of the dynamic
model simulated vibration response for different speed fluc-
tuations.

Figure 10: Time-frequency domain representations
of simulated vibration responses for different condi-
tions.

x̂(τ, ω) =

∫ ∞

−∞
x(t)w(t− τ)e−iωtdt (17)

Here, w(.) represents the windowing function. The time-
frequency domain representation provides insights into
the localised variation in frequencies. Specifically, the
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frequency variations, which are difficult to capture by the
frequency domain analysis due to spectral smearing, are
easily comprehensible in the time-frequency domain rep-
resentation.

Figures 10a and 10b show the time-frequency domain
representations of vibration responses generated for the
crack growth and speed variation models. The variations
in instantaneous frequency are apparent in both cases 6 .
Specifically, the crack growth model was simulated at a
constant speed; hence, the GMF stays constant over time.
However, in the speed variation model, the time-frequency
representation aptly illustrates the variations in GMF due
to shaft frequency fluctuation. In the crack growth model,
frequency variations may be observed at the fault tran-
sients due to their FM nature. The time-frequency rep-
resentation provides clear insight into the frequency vari-
ation of the vibration response across time. However,
the spectral coherence of the representation is limited by
the time and frequency resolution balance across the re-
spective axes 7 . Hence, spectral energy quantification for
fault severity estimations is not easily possible in the time-
frequency domain. When combined with appropriate fault
enhancement algorithms, the frequency domain analysis
has shown better quantification of fault severity. Nonethe-
less, the time-frequency representation is ideal for reverse
estimation of instantaneous frequency in the unavailabil-
ity of tacho-pulse signals.

5. CONCLUSION

The study presents a digital twin based on a dynamic
model for simulating gearbox vibration response in the
presence of a fault and variable operational speed. The
six-degree-of-freedom model successfully simulates the
vibration response characteristic of a gearbox with root
cracks and operates at variable speed. Further, a de-
tailed study of the vibration response in its time-domain,
frequency-domain, and time-frequency domain is pre-
sented. The presented model can simulate the vibration
response’s spectral distortions and amplitude-frequency
modulations indicative of fault information and speed
variations.

6 The second GMF harmonic is shown in the figures due to
its higher spectral energy concentration, as apparent in the fre-
quency domain representations.

7 Heisenberg’s uncertainty principle.
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