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ABSTRACT

This paper introduces a modal decomposition method
to retrieve the effective fluid parameters of a sample
of anisotropic porous material from multi-modal reflec-
tion and transmission coefficients measured in a squared
impedance tube. The approach extends on traditional
impedance tube methods to include higher-order modes,
allowing to characterize the test specimen for plane-wave
and multi-modal reflection and transmission coefficients.
The proposed formulation uses a modal expansion of the
sound pressure and normal particle velocity in the tube,
reducing the problem to a system of two differential equa-
tions for the components of the pressure and particle ve-
locity projected over the normal modes. The system is
solved analytically, which leads to an exact algebraic for-
mulation of the reflection and transmission matrices. An
inverse problem is further formulated to infer the bulk
modulus and density tensor coefficients of the anisotropic
specimen. The method is evaluated numerically on a syn-
thetic anisotropic sample of known porous properties.

Keywords: Anisotropic porous media, multi-modal anal-
ysis, impedance tube

1. INTRODUCTION

Acoustic wave propagation and viscothermal dissipation
of acoustic energy in porous media can be described
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macroscopically by an equivalent fluid model, which re-
quires the knowledge of several pore parameters. Al-
though some of the pore parameters can be measured di-
rectly, these methods require specialized equipment and
are often difficult to perform. In this context, inverse
characterization methods that are based on the inversion
of the scattering matrix [1] are particularly interesting, as
they allow to recover the dynamic density and bulk mod-
ulus of the equivalent fluid from simple measurements of
the normal incidence reflection and transmission coeffi-
cients [2]. If the material is homogeneous and isotropic,
these two frequency-dependent fluid parameters are also
sufficient to determine the six Johnson-Champoux-Allard-
Lafarge (JCAL) parameters [3] that control the dissipation
of acoustic energy in the medium.

However, most porous materials are anisotropic and
exhibit different properties along orthogonal directions
known as the principal directions. Specifically, the in-
fluence of anisotropy translates into a full symmetric den-
sity tensor (in place of a scalar), drastically increasing the
number of effective fluid parameters required to describe
the medium.

Several studies extended the inversion procedure pre-
sented in [2] to characterize anisotropic materials. How-
ever, most of these studies are based on simplified as-
sumptions on the nature of anisotropy; e.g., anisotropic
materials with principal directions belonging to the layer
plane interface [4, 5], or two-dimensional anisotropic ma-
terials with principal directions arbitrarily tilted with re-
spect to the reference coordinate system [6–8]. To the au-
thors’ knowledge, the only study that characterizes fully
anisotropic porous materials in three dimensions (i.e.,
anisotropic porous materials having principal axes tilted
in a priori unknown directions) is due to Terroir et al.
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[9], who described a general method to recover the effec-
tive fluid parameters and the orientation of the material’s
principal directions from knowledge of the reflection and
transmission coefficients at six angles of incidence. Ex-
perimental validation was recently achieved by Cavalieri
et al. [10], who measured the normal incidence reflection
and transmission coefficients of six samples of glass wool
cut in six different orientations in an impedance tube.

Following a different approach, the present study ex-
ploits the concept of modal decomposition [11–14] to
elicit higher order modes in the tube and characterize the
test specimen for plane-wave and multimodal reflection
and transmission coefficients. Such approach is signifi-
cant in that it allows to retrieve the effective fluid parame-
ters and the principal directions without changing the ori-
entation of the sample in the tube.

2. THEORY

Consider a layer of homogeneous anisotropic porous ma-
terial with thicknessL, bulk modulusB and density tensor
ρmounted in a rectangular impedance tube with cross sec-
tion A = [0, w1]×[0, w2]. In the reference coordinate sys-
tem (O, e1, e2, e3) with position coordinates (x1, x2, x3),
its boundaries are defined by the equations x3 = 0 and
x3 = L. We further assume that the density tensor ρ
is symmetric; that is ρ⊤ = ρ, where ⊤ denotes non-
conjugate transposition. In particular, the orthonormal co-
ordinate system (eI, eII, eIII) of the principal directions of
the layer can be defined so that the density tensor is diag-
onal in this system; that is ρ = ρ∗ = diag(ρI, ρII, ρIII),
where ρI, ρII and ρIII are the principal densities and the
superscript ∗ designates the diagonal tensor. In the ref-
erence coordinate system, the density tensor reads ρ =
Rrotρ

∗R⊤
rot, where Rrot = R3(θIII)R2(θII)R1(θI) is the

rotation matrix between the two coordinate systems, with
R1, R2 and R3 being elementary rotation matrices and
θI, θII and θIII the roll, pitch, and yaw angles, respectively.

2.1 Formulation

Outside the layer (i.e., for x3 < 0 and x3 > L), the sound
pressure and particle velocity fields (p, v) are governed by
the equations of mass and momentum conservation:

div(v) =
iω
B0

p, (1a)

iωv =
1

ρ0
∇p, (1b)

where B0 and ρ0 are the bulk modulus and scalar density
of air, respectively, ω = 2πf is the angular frequency and
the time dependency e−iωt is omitted. Similarly, the sound
pressure and particle velocity fields in the layer (i.e., for
0 < x3 < L) verify

div(v) =
iω
B
p, (2a)

iωv = h∇p, (2b)

where h is the symmetric inverse density tensor and reads

h =

h11 h12 h13
h12 h22 h23
h13 h23 h33

 =

(
h⊥ h3

h⊤
3 h33

)
, (3)

where (h11, h12, h13, h22, h23, h33) are the individual in-
verse density tensor components, h⊥ is a 2×2 matrix,
and the subscript ⊥ designates the transverse components.
This tensor is diagonal in the orthonormal coordinate sys-
tem of the principal directions of the layer.

As the tube is of constant cross-section, the boundary
condition at its walls read:

n⊤v = 0, (4)

where n = [n⊥; 0] is the normal vector. The system of
differential equations (2a) and (2b) can be rewritten as fol-
lows

h33
∂p

∂x3
= −h⊤

3 ∇⊥p+ iωv3,

∂(iωv3)
∂x3

= −ω2B−1p− div⊥(h⊥∇⊥p+ h3
∂p

∂x3
),

(5)
with the boundary condition

n⊤
⊥(h⊥∇⊥p+ h3

∂p

∂x3
) = 0. (6)

Outside the layer, the problem reads{
(∆ + ω2ρ0B

−1
0 )p = 0

n⊤
⊥∇⊥p = 0

(7)

2.2 Modal decomposition

The pressure p and the axial particle velocity v3 are now
expressed as the superposition of an infinite number of
transverse modes ψb(x1, x2), b ∈ N:

p(x1, x2, x3) =
∑
b∈N

ψb(x1, x2)pb(x3), (8a)

iωv3(x1, x2, x3) =
∑
b∈N

ψb(x1, x2)Ub(x3), (8b)
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where
ψb(x1, x2) = g(w1)

m (x1)g
(w2)
n (x2), (9)

with g
(w)
m (x) =

√
εm/w cos (mπx/w), ε0 = 1 and

εn>0 = 2. The modal functions ψb(x1, x2), b ∈ N,
are the eigenfunctions obeying the transverse eigenprob-
lem div⊥(∇⊥ψb) = −γ2bψb, with the boundary condi-
tion n⊤

⊥∇⊥ψb = 0. They form a complete orthonor-
mal basis for the inner product (f |g) =

∫
A fgdS; i.e.,

(ψa|ψb) = δab. The modal decompositions in Eqs (8a)
and (8b) can also be written as [15]

p = ψ⊤p, (10a)

iωv3 = ψ⊤u, (10b)

where p, u and ψ are column vectors.
Equation (5) is now projected on the orthonormal ba-

sis (ψa)a∈N
h33p

′
a = −

∑
b∈N

Cabpb + Ua,

U ′
a = −ω2B−1pa −

∑
b∈N

(Dabpb + C̃abp
′
b),

(11)

where Cab = (ψa|h⊤
3 ∇⊥ψb), C̃ab = (∇⊥ψa|h3ψb) and

Dab = (∇⊥ψa|h⊥∇⊥ψb). This yields a system of differ-
ential equations in p and u(

h331 0
−C̃ 1

)(
p′

u′

)
=

(
−C 1

−ω2B−11 + D 0

)(
p
u

)
,

(12)
which can be solved using several numerical strategies
[14]. Equation (12) can be rewritten as

p′′ +
1

h33
(C − C̃)p′ +

(
ω2

h33B
1 − 1

h33
D
)

p = 0. (13)

3. ANALYTICAL SOLUTION

In this study, we consider the particular case in which the
principal directions are rotated only around the longitudi-
nal axis e3 of the tube (i.e., in the transverse plane). In this
case, h3 = 0 so that C = C̃ = 0 and Eq. (13) reads

p′′ = Mp, (14)

where M = −h−1
33 (ω

2B−11 − D). The matrix M is diag-
onalized according to

M = QΓ2Q−1, (15)

where Γ2 is the diagonal matrix of eigenvalues and Q is
the associated matrix of eigenvectors. This yields the gen-
eral solution:

p(x3) = QeΓx3Q−1c+ + QeΓ(L−x3)Q−1c−. (16)

Let us now consider an incident plane wave propa-
gating towards the layer from the left (i.e., in the region
x3 < 0). The multimodal solution to the differential equa-
tion (7) reads

p(x3 < 0) = eρ0Ycx3p(i) + e−ρ0Ycx3p(r), (17)

where p(i) is a vector containing the modal components
of the incident wave at x3 = 0, p(r) = Rp(i) contains
the modal components of the reflected wave with R the
reflection matrix, and

Ycab =
i
ρ0

√
ω2

ρ0
B0

− γ2aδab (18)

is the characteristic admittance of the waveguide. In the
region x3 > L, the transmitted sound pressure reads

p(x3 > L) = eρ0Yc(x3−L)p(t), (19)

where p(t) = Tp(i) contains the modal components of the
transmitted wave with T the transmission matrix.

The scattering matrix can be written as

S =

(
R T′

T R′

)
, (20)

where R and T are the reflection and transmission matri-
ces for a right-going incident wave (i.e., propagating to-
wards the layer from the left), and R′ and T′ are the re-
flection and transmission matrices for a left-going incident
wave (i.e., propagating towards the layer from the right).
Since h3 = 0, we have R = R′ and T = T′. The matrices
R and T are obtained from the continuity of the pressure
and normal component of the particle velocity at x3 = 0
and x3 = L, and read:{

R = (Yc + Y0)
−1(Yc − Y0),

T = Tr(1 − HRlHRr)
−1HTl,

(21)

where Y0 = Ỹc(1 − HRrH)(1 + HRrH)−1 is the ad-
mittance matrix at x3 = 0, Ỹc = h33QΓQ−1, H =
QeΓLQ−1, Rr = Rl = (Ỹc + Yc)

−1(Ỹc − Yc), Tr =
(Yc + Ỹc)2Ỹc, and Tl = (Yc + Ỹc)2Yc.
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4. NUMERICAL RESULTS

The validity of the method is examined numerically on
a synthetic anisotropic sample with known porous prop-
erties. Based on the reflection and transmission matrices
derived in Sect. 3, the procedure described in [9] and [10]
is applied to retrieve the bulk modulus B and the coeffi-
cients h11, h12, h22 and h33 of the inverse density tensor.
The results were not available at the time of writing.

5. CONCLUSION

A multimodal method for the characterization of
anisotropy in porous media has been formulated. The
method is based on the inversion of the scattering ma-
trix to retrieve the effective fluid parameters from multi-
modal reflection and transmission coefficients measured
in an impedance tube.
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