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ABSTRACT

The diffusion equation model with a constant diffusion co-
efficient underestimates the sound pressure level and re-
verberation time when elongated rooms are considered in
room acoustics. In fact, for these types of rooms, it has
been established that the diffusion coefficient is spatially
variable and depends on the acoustics properties of the
surfaces. This study presents a novel method for estimat-
ing the spatially dependent diffusion coefficient of the dif-
fusion equation model for the case study of long rooms
using an artificial neural network. The network is trained
to relate the dimensions of the room, the absorption co-
efficients of the surfaces and the 3D source and receiver
positions to the corresponding diffusion coefficient us-
ing supervised learning. The databases are generated us-
ing the sound particle tracing approach (SPPS) and Fick’s
law. Results show that the neural network model, with the
appropriate considerations and architecture, can quickly
recover the space-varying diffusion coefficients over the
room based only on the model’s inputs (geometries, prop-
erties of the room, and source positions). When the pre-
dicted diffusion coefficients of the neural network are used
in the diffusion equation, the sound pressure level and re-
verberation time of the room can be accurately predicted.
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1. INTRODUCTION

In the past few decades, simulating how sound behaves in
spaces has been essential to enhancing interior comfort.
As a result, numerous simulation techniques are created to
improve the accuracy of prediction methods. Some exam-
ples are ray and beam tracing [1], the diffusion equation
approach [2,3], the image source method [1], the radiosity
method [1], and various wave-based methods [4]. In par-
ticular, the diffusion equation has been used recently due
to its efficiency in computational time [5].

However, the limiting parameter of the diffusion
equation is the diffusion coefficient (in units m2/s). This
is often considered a constant value, depending on the
room’s volume and the surface areas of the boundaries.
However, for non-proportionate rooms, this assumption is
incorrect. Effectively, Fick’s law assumes a proportion-
ality relationship between the reverberant sound intensity
vector I and the gradient of the reverberant energy density
w(r) (in kg/(m s2)) through the diffusion coefficient:

I(r) = −D(r)∇w(r) (1)

where r = (x, y, z) is the position vector. Researchers
have shown that it should be spatially varying depend-
ing on the dimensions of the room and also dependent on
source position and the mean absorption coefficient α of
the room [5–8]. The diffusion coefficient can be deter-
mined using Equation (1), which requires knowledge of
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the intensity of the sound and the energy density. These
parameters can be calculated using a reference method
such as the sound particle tracing model (SPPS) [9]. The
present study explores using an artificial neural network to
estimate the diffusion coefficient directly. In the domain
of room acoustics, previous work has shown that it is pos-
sible to use neural networks [10], where the estimation of
the mean absorption coefficients was derived from a room
impulse response using virtually supervised learning [10].

In a second step, the diffusion equation model using
these estimated neural network diffusion coefficient val-
ues is used to calculate the sound pressure level (SPL) and
the reverberation time (T30), two main parameters in room
acoustics, and compared to a reference acoustics approach
of the sound particle tracing model (SPPS).

In Section 2, an introduction to the diffusion equa-
tion model is given. Section 3 describes the methodology
used for the study, including the neural network architec-
ture. The results of the neural network are discussed in
Section 4 and compared to the diffusion coefficient val-
ues obtained by SPPS. In Section 5, the predicted diffu-
sion coefficients from the neural network are introduced
in the diffusion equation model, and the results of SPL
and T30 are compared with those calculated with the ref-
erence method. The paper concludes in Section 6 with an
overview of the results and limitations of the method.

2. DIFFUSION EQUATION AND DIFFUSION
COEFFICIENT IN ACOUSTICS

The diffusion equation is a partial differential equation
used to predict the time-dependent energy density for the
diffuse part of the sound field, enabling the calculation
of the room’s acoustic parameters. It is an energy-based
method that allows the calculation of the sound energy
density over space and time. Under the assumption of
Fick’s law of diffusion described in Equation (1), the be-
haviour of the sound in a room can be described by the
time-dependent diffusion equation model, for acoustic en-
ergy density w(r, t) in [kg/(m s2)] [11]:

∂w(r, t)
∂t

= ∇ · (D(r)∇w(r, t)) + q(r, t), in V (2)

where D(r) is a proportionality factor between the sound
intensity and the gradient of the sound energy density with
units [m2/s] and q is the energy per volume of a sound
source. The diffusion equation is associated with some
boundary conditions that describe how the sound behaves

at the surface boundary of the room as follows [12, 13]:

D(r)
∂w(r, t)

∂n
+ cAw(r, t) = 0 in ∂V (3)

where n is the normal to the surface and A is the ab-
sorption factor. The absorption factor depends on the ab-
sorption coefficient of the specific surface and has been
modified over the years to allow the use of higher absorp-
tion coefficients in the model by Picaut [14] and Jing and
Xiang [13, 15]. The absorption factor, defined by Picaut
as the Sabine Absorption Term (A = α/4), is used for
the simulations of this article [14]. The diffusion coef-
ficient represents a limiting factor for the diffusion equa-
tion, which is often considered as a constant value for pro-
portionally shaped rooms depending on the volume and
total surface area of the room, as highlighted in Equation
(4) [11]:

Dth =
λc

3
, (4)

where Dth stands for theoretical diffusion coefficient, and
λ is the mean free path of the room defined as 4V/S,
where V represents the room’s volume and S represents
its entire boundary surface area. The condition for using
this definition of Dth is that it holds for diffuse fields and
proportionate rooms [11].

The diffusion coefficient has been studied extensively,
and it has been discovered that for non-proportionate
rooms, the assumption of using a constant diffusion coef-
ficient does not hold, as it incorrectly predicts the SPL and
the T30 of the room, along with most of the other parame-
ters. By using Fick’s law, multiple researchers have high-
lighted that the diffusion coefficient for non-proportionate
rooms depends on different variables [5–8], like the dis-
tance between source and receiver, mean absorption and
scattering coefficient [6–8] but also the source position
[5]. In [6], the researchers consider the normed approx-
imated diffusion coefficient [6]:

DFick(r) =

√
I2x + I2y + I2z√(

∂w

∂x

)2

+

(
∂w

∂y

)2

+

(
∂w

∂z

)2
(5)

where Ix, Iy, Iz are the components of the intensity vector

I(r) and the
(
∂w

∂x

)
,

(
∂w

∂y

)
,

(
∂w

∂z

)
are the component

of the gradient of the energy density vector w(r). The gra-
dient of the energy density is calculated using the second
order of accuracy central difference. Using the approach
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described above, Figure 1 shows the diffusion coefficient
along the central axis of the elongated room of dimensions
[Lx, Ly, Lz] = [40, 4, 4] with mean absorption coefficient
of 0.1, with the source position at (2.0 m, 2.0 m, 2.0 m)
and the receiver position at (x, 2.0 m, 2.0 m), where x
indicates that the receiver coordinate x changes over the
length of the room.

Figure 1: Numerical estimate DFick(r) on the central
line over the x-axis.

As can be seen in Figure 1, this diffusion coefficient
presents a maximum value close to the end of the elon-
gated room. This peak is probably due to the backward
propagation reflections from the extremities, and it repre-
sents a challenge when proposing a neural network archi-
tecture.

Visentin shows that if the DFick(r) is only calculated
on the main axis and if it is assumed that the value is
equal in the cross section, then the diffusion model cor-
rectly predicts the SPL and T30 over the main axis. Mul-
tiple researchers have assumed that the diffusion coeffi-
cient in elongated rooms is constant over the cross-section
[5, 6, 16]. This is also the assumption used in this paper.

3. METHODOLOGY

As seen in Section 2, studies have indicated that the dif-
fusion coefficient is spatially dependent. However, pre-
dicting these values prior to solving the diffusion equation
for an elongated room remains a challenge. In fact, there
are two possibilities to find the diffusion coefficient: (1)
conducting real measurements in elongated rooms, how-
ever, there is no standard procedure or methodology to
conduct these measurements and (2) estimating the diffu-
sion coefficient by simulations but it is necessary to use

another acoustic model approach to calculate it. In order
to overcome this limitation, a third option will be to ana-
lytically estimate a function for DFick(r) depending on the
room variables. However, it is quite challenging due to the
form of the diffusion coefficient as seen in Figure 1 (more
specifically due to the peak).

Therefore, in this study, a neural network architecture
is designed and fine-tuned to estimate the diffusion coef-
ficient in a supervised fashion, given only the room’s di-
mensions, the mean absorption coefficient, and the source
and receiver positions as input. The sound particle tracing
model (SPPS) serves as a reference method both to calcu-
late the diffusion coefficient DFick(r) and to calculate the
acoustic parameters of the room (SPL and T30).

3.1 Simulated database

To create the database necessary for the neural network,
the SPPS is used in this study to calculate both the inten-
sity and the gradient of the energy density. These quan-
tities are obtained by considering the energy density and
intensity of the particles passing through a small sphere
centered at the receiver point [9]. The gradient of the en-
ergy density is then computed using the second-order ac-
curate central difference scheme.

For each room, a 3D grid size of receiver position
spaced by ∆ = 0.5 m is used to discretize the volume.
The sound power of the source is considered equal to 0.01
W. The direct sound energy between the source and the
receiver is removed.

The simulations are conducted by emitting
200,000,000 particles. This number of particles de-
creases with time. At each reflection with the surface,
the considered particle could be absorbed or reflected
depending on the absorption coefficient. For example, a
surface with a mean absorption coefficient of 0.3 gives a
30% probability of being absorbed and 70% probability
to be reflected [9]. There is no atmospheric attenuation
in any of the simulations. The scattering coefficient for
each simulation is 1, therefore, only diffusely reflective
boundaries are considered. The receivers are points on a
grid every 0.5 m between each other.

A data set of 400 room configurations is simulated
with the SPPS to calculate the diffusion coefficient at each
point in the 3D room grid. The data set is formed by the
target data (DFick(r)) and the following input: the length,
width, and height of the room (Lx, Ly, Lz , respectively),
the coordinates of the source position (Sx, Sy, Sz), the co-
ordinates of the receiver positions (Rx, Ry, Rz) and the
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mean absorption coefficient (α).
The input data are chosen considering the previous

literature [5–7]. The configurations chosen are elongated
rooms within these limits:

• Length between 10 m to 40 m with steps of 0.1 m;
• Width between 2 m to 5 m with steps of 0.1 m;
• Height between 2.5 m to 4 m with steps of 0.1 m;
• Mean Absorption from 0.05 to 0.3 with steps of

0.05.

The position of the source is chosen at random but with
a minimum distance from the boundary of 0.5 m. The
coordinates are multiples of 0.1 m.

To make sure that the rooms are elongated, the com-
pactness value of a room, the ratio of its whole cubed sur-
face area to its squared volume, divided by the same ratio
of an equal-volume sphere [17] is chosen to be more than
3.5.

The database is divided into training, validation, and
test datasets. The training set (55% of the full database) is
used by the neural network to learn from, and the valida-
tion set (35% of the database) is used to tune the model by
preventing overfitting. The training and validation dataset
comes from the same rooms but different grid receiver
points. On the other end, the test set (10% of the full
database) is used to evaluate the capacity of the neural net-
work to predict the diffusion coefficient inside new unseen
rooms.

3.2 Pre-processing of data

Since there are peaks (singularities) in the diffusion coef-
ficient values in the database, as seen in Figure 1, the scale
of the observations is quite large. In addition, the distri-
bution of the observation is non-Gaussian, as can be seen
in Figure 2. Both these features are known to be prob-
lematic for neural network training. To resolve these two
points, the data DFick(r) are divided by the room-specific
Dth (denoted as Dnorm) and then by taking the logarithm
of base 10 of the value, as shown in Figure 3.

Figure 2 shows that the majority of DFick(r) values
lie in the low range, predominantly between 0 and 1000.
Values greater than 1000 are rare, accounting for only 0.56
% of the total data. These higher values are not displayed
in the figure due to their low frequency.

Figure 3 shows that the log10(Dnorm) can be more
closely approximated by a Gaussian curve (which means
that the original data are more or less lognormally dis-
tributed). This normalization significantly improved neu-
ral network estimation performance in practice.

Figure 2: Histogram of DFick(r) for 400 rooms

Figure 3: Histogram of log10(Dnorm) for 400 rooms

3.3 Network architecture

The neural network architecture used in this study is the
multilayer perceptron (MLP). The MLP architecture is il-
lustrated in Figure 4 below.
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Figure 4: MLP network architecture

The starting point of the neural network architecture
is the input vector, which has ten features: the room di-
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mensions (Lx, Ly, Lz), source coordinates (Sx, Sy, Sz),
receiver coordinates (Rx, Ry, Rz) and the mean absorp-
tion coefficient α. The MLP architecture is fully con-
nected and comprises one input layer and three hidden lay-
ers of linear functions of dimensions 512 followed by an
output layer with no activation function, as this is a regres-
sion problem. The input layer goes from dimension 10 in-
dicating the input (Lx, Ly, Lz, Sx, Sy, Sz, Rx, Ry, Rz , α)
to dimension 512, while the output layer goes from dimen-
sion 512 to 1, since the diffusion coefficient value for that
specific grid point in that specific room is a scalar. The
output layer is a single linear neuron predicting the loga-
rithm (base 10) of Dnorm. The loss function is the mean-
squared error loss function. The network is optimized in
the training set using batches of size 1000 and the ADAM
optimizer [18] with a learning rate of 0.0005. The acti-
vation function for the architecture is the Leaky ReLU,
which is appropriate for the type of output, since the log-
normed target values can have negative values. Early stop-
ping is used based on validation loss to prevent overfitting,
and the model with the best validation performance is re-
tained.

4. RESULTS OF THE NEURAL NETWORK

In this section, an analysis is conducted to estimate the re-
liability and relevance of the neural network model. Fig-
ure 5 shows the evolution of the loss function of the train-
ing and validation data sets.

Figure 5: Loss evolution on training and validation
datasets; Training loss, Validation loss.

Zooming in Figure 5, it can be seen that the training
loss tends to be lower than the validation loss and never in-
tersects. This is a good indication of no overfitting. When

the validation loss no longer decreased for more than 10
epochs, the training loop is stopped, and the weights of
the model minimizing the validation loss are kept.

Figure 6 compares the diffusion coefficient given by
Fick’s law (Equation (5)) and calculated with the SPPS
to the estimated diffusion coefficient given by the neu-
ral network and denoted by D̃Fick(r). It is shown that a
good agreement is observed between the DFick(r) and the
D̃Fick(r) values except for some high values of the dif-
fusion coefficient. In these cases, the network tends to
under-fit the values of DFick(r). It also shows that the pre-
processing method seems to work most of the time but
probably not for the highest peak values of the database.
For the test dataset, the mean, median and standard devi-
ation of the absolute error |D̃Fick(r) − DFick(r)| are cal-
culated. These are, respectively, 21.9, 8.4 and 81.6 and
account for the fact that the majority of DFick(r)| are low
in values. Looking at Figure 2, the results of absolute and
relative errors are promising since a mean absolute error
of 20 is quite small compared to the values of DFick(r).

In Table 1 second column, the mean, median and stan-
dard deviation of the relative errors (RE) have also been
calculated:

RE(%) =
|D −DFick(r)|

|DFick(r)|
· 100 (6)

where D = D̃Fick(r).
These values are much lower than the same relative

errors using the Dth, which yields 400 % for the mean, 200
% for the median, and 900 % for the standard deviation,
as shown in Table 1, third column. Therefore, in all cases,
using the estimated diffusion coefficient predicted by the
neural network is always better than using Dth.

Table 1: Relative error calculated with the theoreti-
cal value of Dth and with the value D̃Fick(r) obtained
with the neural network.

with D̃Fick(r) [%] Dth [%]
RE mean 15.8 460.0
RE median 8.0 193.1
RE standard deviation 23.6 870.0
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(a) (b) (c)

Figure 6: Comparison between target values and output value of DFick(r) for training (a), validation (b), and
test set (c).

Based on these results, it is now possible to predict the
diffusion coefficient accurately within the range covered
by the generated data. Rooms outside this range, as noted
in Section 3.1, were not considered.

5. VALIDATION OF THE DIFFUSION MODEL

This section shows the validation process of the results ob-
tained by the neural network in Section 4. The idea is to
verify whether the estimated diffusion coefficient, which
differs on average by approximately 16% from the diffu-
sion coefficient given by the SPPS, can give accurate re-
sults when introduced into the diffusion equation model
(Equations (2) and (3)). In order to conduct this analy-
sis, the SPL and T30 of the room given by this modified
diffusion model and the reference method SPPS are com-
pared. The diffusion equation model used for the calcula-
tions is based on the second-order finite difference numer-
ical method of DuFort and Frankel [19] but with a spatial
variational diffusion coefficient. The mesh chosen in the
diffusion equation is identical to the mesh grid chosen for
estimating the diffusion coefficient (Section 3). As high-
lighted by Visentin [6] the diffusion coefficient value at
the center of the cross section is considered equal over the
cross section. This is also being done in this study for the
DFick(r) and D̃Fick(r). Multiple rooms are checked, but
only the results of a corridor of dimensions [Lx, Ly, Lz]
= [39, 3, 3] are shown in this paper. The results for this
room are obtained using the source position at (1.5 m, 1.5
m, 1.5 m) and the receiver position at (x, 1.5 m, 1.5 m),
where x indicates that the receiver coordinate x changes
over the length of the room with a mean absorption co-
efficient of 0.1 and 0.3. This room is not part of the
training, validation or test dataset of the neural network.

The predicted diffusion coefficient D̃Fick(r) area is calcu-
lated using the weights of the neural network and the input
variables: room dimensions (Lx, Ly, Lz), source coordi-
nates (Sx, Sy, Sz), receiver coordinates (Rx, Ry, Rz) and
the mean absorption coefficient α.

Figure 7 shows the SPL and T30 curves over the
length of the room (x-axis) calculated with the SPPS and
those calculated with the diffusion model with the theoret-
ical diffusion coefficient (Dth), the diffusion coefficients
DFick(r) and D̃Fick(r).

It is shown that the use of DFick(r) and the use of
D̃Fick(r) produces almost no difference in the results of
SPL and T30, although the values are slightly different
mainly at the end of the corridor, where the peak value is
present. The trained neural network can correctly estimate
the diffusion coefficients for most of the receiver points in
the room, leaving the highest values of DFick(r) underesti-
mated. Although this happens, if comparing the SPL and
T30 calculated with DFick(r) and calculated with D̃Fick(r)
the difference is slight. Therefore, the neural network can
estimate the diffusion coefficient to accurately predict the
SPL and T30 of elongated rooms within the range consid-
ered in this study compared to the SPL and T30 calculated
with DFick(r). Once the neural network is trained, this
method does not need another room acoustic method to
estimate the energy density gradient as Visentin et al. [6],
and it is, therefore, much faster.

However, it can be seen that the SPL and T30 calcu-
lated by the diffusion equation and the SPPS do not match,
even when using the DFick(r), especially when the dis-
tance between source and receiver increases and at higher
absorption coefficients (Figure 7 (d)). In addition, there
is a small mismatch also close to the source; however,
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Figure 7: Comparison SPL, T30 and Diffusion coefficient D for a 39 × 3 × 3 m3 with source position at (1.5 m,
1.5 m, 1.5 m) and the receiver position at (x, 1.5 m, 1.5 m) with an absorption coefficient of 0.1 (a, b and c) and
an absorption coefficient of 0.3 (d, e and f); SPL and T30 calculated with SPPS, DFick(x), D̃Fick(x),

Dth.

this is because the diffusion equation wrongly predicts
the sound filed close to the sound source and a correction
will need to be applied as researchers have already high-
lighted [6, 12]. It is therefore demonstrated that using Dth
and DFick(r) as in Equation (5) in the diffusion model has
some limitations. Further research is required to address
this issue.

6. CONCLUSIONS

For non-proportionate rooms, in particular elongated
rooms, the diffusion equation model using the theoretical
diffusion coefficient estimates the variable properties in a
room incorrectly. Therefore, this paper proposes a novel
method to estimate the diffusion coefficient based on the
room’s dimensions, source position, and absorption coef-
ficient via an artificial neural network. The database of
diffusion coefficient DFick(r) data, assuming the correct-
ness of Fick’s law, is created by running the sound particle
tracing model (SPPS). The artificial neural network is cre-
ated and defined to minimize the loss during the training

loop for the training, validation, and test data sets. The tar-
get to optimize is chosen to be the logarithm value in base
10 of the normalized values versus the theoretical diffu-
sion coefficient of DFick(r) as defined in Equation (5) in
Section 2.

Results have shown that the neural network can esti-
mate the correct value of the diffusion coefficient DFick(r)
with a 15% mean relative error. This error is also much
smaller than that using the theoretical diffusion coeffi-
cient.

A validation study is conducted to see if the D̃Fick(r)
predicts correctly the SPL and T30 of different rooms
compared to those of the SPPS. Results show that using
the predicted D̃Fick(r) and the DFick(r) does not change
the SPL and T30 of the room.

It is also shown that there is a limit in using the
DFick(r) and therefore two possibilities would need to be
investigated further: (1) considering a direction dependent
diffusion coefficient, (2) to add an advection term in the
Fick’s law as it appears to approach the limits of its as-
sumptions [11].
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