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ABSTRACT

Condition monitoring of machine elements is critical in
industrial applications, drawing significant attention to
cross-domain bearing fault diagnosis. However, data pri-
vacy concerns and storage limitations pose significant
challenges. To address these issues, source-free domain
adaptation networks, consisting of a feature extractor and
a fault classifier, have been developed. In these frame-
works, the parameters of both components are trained us-
ing only source-domain data. During testing on target-
domain data, the extractor’s parameters are initialized
with the learned source-domain parameters and allowed to
adapt, while the classifier’s parameters remain fixed. Al-
though the proposed approach effectively tackles privacy
and storage concerns, it falls short in providing a unique
feature representation for each domain, limiting its gener-
alization capability. The present work seeks to overcome
the mentioned limitation by employing auto-regressive
models to generate unique feature representations for in-
dividual domains. Additionally, self-organizing maps are
utilised to explore similarities across domains and vari-
ous fault types. The robustness of the proposed approach
is validated through extensive experiments, demonstrating
its effectiveness in improving cross-domain fault diagno-
sis performance.
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1. INTRODUCTION

In modern industrial systems, predictive maintenance
plays a crucial role in ensuring safety and minimizing
downtime. Significant research efforts have been dedi-
cated to developing data-driven methods for early fault
detection [1, 2], which can assist in effective decision-
making. However, real-world implementation faces sev-
eral challenges, including large data storage requirements,
data privacy concerns, and the increased difficulty of do-
main adaptation when applying models across different
operating conditions. Recent studies [3,4] have attempted
to address these issues by developing source-free do-
main adaptation frameworks. This work aims to tackle
these challenges by introducing a novel feature extrac-
tion approach that provides a unique representation of
the dataset, ensuring more distinctive and domain-specific
feature learning.

A source-free domain adaptation approach for bear-
ing fault diagnosis begins with feature extraction from the
source-domain bearing data followed by training a classi-
fier using the corresponding fault labels. Notably, train-
ing is performed exclusively on the source data, without
access to target labels. Once trained, the same feature ex-
traction procedure is applied to the target-domain bearing
data, and the classifier is expected to accurately classify
faults in the target domain despite distributional differ-
ences.

Mathematically, the labelled source-bearing dataset is
represented as DS = {xS

i , y
S
i }

NS
i=1, where xS

i and ySi de-
note the vibration signal and the corresponding fault label
for the ith sample, respectively. The unlabelled target-
bearing dataset is given by DT = {xT

i }
NT
i=1, where NS

and NT represent the number of samples in the source
and target datasets, respectively. Since the source and tar-
get data distributions may differ, the key challenge is to
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learn a mapping function: f : xi → yi using only the
source data, such that it can effectively classify faults in
the target domain despite the absence of target labels.

2. PROPOSED METHOD

2.1 Overview

The proposed method consists of three main stages: fea-
ture extraction, feature representation, and classification.
In the feature extraction stage, the vibration signal is mod-
elled as the output of an Auto-Regressive (AR) process
[5]. The AR model parameters and the residual variance
are extracted as features to ensure a unique representa-
tion for each sample. In the feature representation stage,
the extracted features are structured using Self-Organizing
Maps (SOMs) [6]. The transformation organizes the sam-
ples based on similarity, improving feature discrimination
and clustering. In the classification stage, a deep neural
network (DNN) is trained on the SOM-structured feature
representations of the source domain. Once trained, the
parameters of both the SOM and the classifier are frozen.
The same feature extraction and representation process is
then applied to the target domain data. The structured rep-
resentations of the source and target samples are clustered
independently. To facilitate unsupervised domain adapta-
tion, the target clusters are mapped to the closest corre-
sponding source clusters. Finally, the mapped target sam-
ples are classified using the trained DNN. An overview of
the proposed method is illustrated in Fig. 1.

2.2 Mathematical Framework of the Proposed
Method

2.2.1 Feature Extraction Using AR Model

All vibration signals in the dataset are modelled as the out-
put of an AR process of order five as

x(k) =

5∑
j=1

αjx(k − j) + ϵ(k) (1)

where ϵ(k) is white noise with variance σ2, and αj rep-
resents the jth coefficient. These coefficients, along with
the residual noise, constitute the feature vector for each vi-
bration signal, expressed as f = [α1, α2, α3, α4, α5, σ

2].
Consequently, the transformed dataset is given by D̄S =
{fSi , ySi }

NS
i=1 and D̄T = {fTi }

NT
i=1.

2.2.2 Structured Representation via SOM

The extracted features are mapped to a structured 2D la-
tent space using a SOM consisting of a 20 × 20 neuron
lattice, with wij representing its weights. The iterative
process for updating these weights is as follows:

• Find the Best Matching Unit (BMU):

(i∗, j∗) = argmin
(i,j)
∥fi −wij∥

• Update neuron weights:

wij← wij + η.h(i, j)(fi −wij)

where η is the learning rate, and h(i, j) =

e
(i−i∗)2+(j−j∗)2

2β2 is the Gaussian neighborhood
function with β as the neighborhood radius.

• Repeat until the weights converge.
After convergence, the structured representations
from SOMS and SOMT are denoted as wS

ij and
wT

ij , respectively.

2.2.3 Training DNN-Based Classifier

The updated weights wS
ij from SOMS are stacked to form

zS , which serves as input to the DNN for training its
weights and biases. The DNN architecture is mathemati-
cally expressed as:

ŷS = σ3(W3(σ2(W2(σ1(W1z
S + b1)) + b2) + b3))

(2)
where W∗,b∗, and σ∗ denote the weights, biases, and
ReLU activation functions, respectively. Training is per-
formed for 2000 epochs to minimize the cross-entropy
loss between ŷS and the true source labels using the Adam
optimizer.

2.2.4 Unsupervised Domain Adaptation and
Classification

After training, the weights wS
ij of SOMS and the param-

eters of the DNN are frozen while adapting to the target
dataset. The procedure for aligning wT

ij to wS
ij is as fol-

lows:

• Apply K-means clustering to the neurons of SOMS

and SOMT :

CS = {cSij}(i,j)∈SOMS
, CT = {cTij}(i,j)∈SOMT

where cSij and cTij represent the cluster assignments
for each neuron.
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Figure 1. Overview of the proposed method.

• Compute the centroid of source clusters:

µS
k =

1

|CS
k |

∑
(i,j)∈CS

k

wS
ij

where CS
k is the set of neurons assigned to cluster

k.
• Update target weights iteratively:

wT
ij ← λwT

ij + (1− λ)µS
k

Finally, the updated wT
ij is fed into the DNN for fault clas-

sification:

ŷT = DNN(wT
ij) (3)

3. DISCUSSION

3.1 Dataset and Tasks

The proposed method is validated on both same-domain
and cross-domain tasks using bearing vibration data from
the CWRU dataset [7] and the IMS dataset [8]. For the
CWRU dataset, vibration data collected from both the
drive end (CWRUd) and fan end (CWRUf ) are used. The
fault types considered are Rolling Element (RE), Outer
Race (OR), Inner Race (IR), and the Healthy condition.
To ensure uniformity, vibration signals from both datasets
are resampled to 12 kHz and 20 samples are used for each
fault type. The tasks defined for evaluation are summa-
rized in Tab. 1.

Table 1. Description of diagnostic tasks for same-
domain and cross-domain fault classification.

Task Type Source Target
T1 Same-domain CWRUd CWRUf

T2 Same-domain CWRUf CWRUd

T3 Cross-domain CWRUd IMS
T4 Cross-domain CWRUf IMS
T5 Cross-domain IMS CWRUd

T6 Cross-domain IMS CWRUf

3.2 Comparison

The classification accuracy of the proposed method is
compared with three existing methods: Source HypOth-
esis Transfer (SHOT) [9], Contrastive Test-Time Adapta-
tion (AdaContrast) [10] and Tent [11]. The accuracy re-
sults for each task are presented in Tab. 2.

3.3 Observations

The observation of the confusion matrices reveals that
SHOT, AdaContrast, and the proposed method success-
fully cluster the fault types, whereas Tent struggles signifi-
cantly. However, the relatively low accuracy scores across
all methods highlight the inherent challenge of unsuper-
vised domain adaptation in a source-free setting. The
slight improvement in accuracy observed with the pro-
posed method can be attributed to the adaptive weight
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Table 2. Classification accuracy (%) of different
methods for same-domain and cross-domain diag-
nostic tasks.

Task SHOT AdaContrast Tent Proposed
T1 50 50 22.45 50
T2 50 46.06 27.98 50
T3 50 25 23.94 50
T4 0 25 27.02 47.34
T5 75 25 28.94 50
T6 25 25 22.13 25
Avg 41.67 32.67 25.41 45.39

update strategy, wherein the SOMT cluster centroids are
adjusted towards the nearest cluster centroid in SOMS .
This adjustment enhances feature alignment between the
source and target domains, leading to better classification
performance. For instance, in Task 4 (cross-domain adap-
tation), the SHOT approach successfully identified three
distinct fault types in the target dataset. However, it failed
to assign the correct labels, leading to significant misclas-
sification. The corresponding confusion matrix for Task
4 using SHOT is shown in Fig. 2. The proposed method
consistently achieved around 50% accuracy in all tasks ex-
cept Task 6 and was outperformed only in Task 5 by the
SHOT approach.

4. CONCLUSION

The current study presents a source-free domain adap-
tation approach for bearing fault diagnosis, leveraging
AR modelling, SOM, and a DNN. While AR modelling
captures a unique representation of vibration data, the
structured feature representation via SOM enhances clus-
tering, leading to improved classification accuracy. Ex-
perimental results demonstrate that the proposed method
outperforms existing approaches in both same-domain
and cross-domain tasks. By addressing the challenge of
domain shift in a source-free framework, the proposed
method improves the feasibility of deploying machine
learning models in real-world fault diagnosis applications.
While the results are promising, further research is needed
to refine pseudo-labelling strategies for better accuracy
and to enhance robustness in noisy environments.
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Figure 2. Confusion matrix for Task 4 using the
SHOT approach.
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