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ABSTRACT

Engineering offices and manufacturers of acoustic build-
ing systems or materials often rely on measurement data
to estimate whether building solutions will be of sufficient
acoustic quality. This typically involves numerous costly
and time-consuming laboratory measurements, making it
difficult to efficiently explore and optimize various design
configurations. In this paper, a method is presented to
accurately and efficiently predict the sound insulation of
multilayer structures. Accuracy ensures reliability, while
efficiency is crucial for optimization, where numerous
simulations are needed, for example to identify the ideal
layering or material properties of a(n) (inter)layer. The
prediction method accounts for arbitrary layering, finite
dimensions, boundary conditions and resulting modal be-
havior, as well as frequency- and temperature-dependent
material properties. Extensive validation has been con-
ducted using numerous examples with a specific focus on
glazing, demonstrating the model’s robustness and relia-
bility. An accuracy of 1− 2 dB in single number rating is
generally achieved using default non-product specific ma-
terial data. The method achieves higher accuracy when
material properties are determined from testing.
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1. INTRODUCTION

Engineering offices and manufacturers of acoustic build-
ing systems or materials often rely on measurement data
since the alternatives regarding existing prediction soft-
ware are either too slow (e.g. using finite elements), or too
inaccurate (e.g. analytical expressions assuming thin plate
theory). This typically results in a difficult process of ex-
ploration and optimization of various new or existing de-
sign configurations, since it involves numerous costly and
time-consuming laboratory measurements. The need for
sound insulation prediction methods which are both accu-
rate and efficient is therefore of crucial importance.

In this paper, a robust method is presented, which is
designed to accurately and efficiently predict the sound
insulation of multilayer structures with varying elements
such as wall leafs and cavities. Wall leafs can consist of
layered elements of elastic, viscoelastic and poroelastic
nature and are implemented using elastodynamics theory.
The modal Transfer Matrix Method (mTMM) [1, 2] en-
velops this theory and additionally accounts for arbitrary
layering, finite dimensions, simply supported or antisym-
metric boundary conditions and the resulting modal be-
havior. The mTMM also allows for frequency-dependent
material properties, which can be especially important in
practical applications. Viscoelastic interlayers are a par-
ticular type of interlayer that can be present in these lay-
ered wall leafs, since the material properties depend both
on frequency and temperature. This dependence on tem-
perature is expressed through the Williams-Landel-Ferry
equation [3, 4], while the dependence on frequency is
accounted for using the Generalized Maxwell-Wiechert
model [5]. Cavities are assumed to be ’hard-walled’ with
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Figure 1. Glazing system with three wall leafs L1, L2 and L3, separated by two cavities C1 and C2. The third
wall leaf is layered, consisting of two elastic (E) layers with a viscoelastic (VE) in between. The outer wall
leafs are coupled to diffuse fields (DF).

finite dimensions and the interaction between cavity and
adjoining wall leafs is accounted for [6].

This method enables the exploration and optimization
of various design configurations without the need for ex-
tensive laboratory testing. The method’s robustness and
reliability are demonstrated through extensive validation
using numerous examples, with a specific focus on glaz-
ing. Validation on glazing is particularly interesting since
all these elements (wall leafs, cavities, viscoelastic inter-
layers) can all occur separately or combined in any desired
order. The ability to accurately predict sound insulation is
crucial for optimizing design configurations and exploring
new materials and material properties. By reducing the re-
liance on costly and time-consuming laboratory measure-
ments for experimental design optimization, this approach
facilitates the development of effective acoustic solutions
for a wide range of applications.

2. SOUND INSULATION PREDICTION

Walls and floors typically consist of several structural
parts, such as leafs and cavities. A wall leaf consists of
at least one solid layer, and layered wall leafs can con-
tain varying element types, e.g. an elastic layer or a vis-
coelastic interlayer which is used in laminated glazing.
Cavities are assumed to be hard-walled, and can either
be filled with fluid or with porous material. The sound
insulation prediction approach is graphically represented
in Fig. 1. It starts by indicating all leafs and cavities, and
using the corresponding mathematical approach for each
leaf or cavity, as will be discussed in the following sub-
sections 2.1 and 2.2. The coupling between wall leafs and

cavities is briefly discussed and finally the computation of
the diffuse sound insulation is included.

2.1 Wall leafs

Layered elements such as wall leafs or floating floors
are implemented using elastodynamics theory, which ac-
counts for longitudinal and shear wave propagation, as
well as their interaction in the form of bending waves. One
of the main advantages over thin plate theory for the pre-
diction of sound insulation is that thickness effects such
as thickness resonances are accounted for due to the pres-
ence of the shear waves. The elastodynamics theory also
successfully captures key physical phenomena such as the
coincidence effect and the mass-air-mass resonance. This
theory is enveloped by the mTMM [1, 2], which is used
here. Layers with materials of an elastic or viscoelastic
nature (also poroelastic layers, but these are not present
in glazing) can all be implemented and combined into a
single wall leaf. Material properties can be frequency-
dependent, but also temperature-dependent in the case of
viscoelastic interlayers. The prediction approach for these
interlayers is elaborated in detail in section 3, since they
are often used in glazing.

In the mTMM, the boundary conditions of a wall leaf
are accounted for by decomposing the out-of-plane dis-
placements of the leaf into sinusoidal basis functions [1],
which correspond to antisymmetric boundary conditions
for thick wall leafs. These basis functions represent mode
shapes of the wall leaf and they occur at their respec-
tive natural frequencies, making the mTMM a modal ap-
proach. Due to the combination of this modal approach
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and employing analytical solutions for the wave propaga-
tion in each layer in the frequency-wavenumber domain,
a high computational efficiency is achieved.

2.2 Cavities

Cavities are modeled as ’hard-walled’ three-dimensional
cuboid acoustical spaces. A modal approach is applied,
where the mode shapes or the basis functions of the cavity
are taken to be the normalized mode shapes of a hard-
walled, rectangular cuboid cavity [7]. The dynamic stiff-
ness of the cavity is then expressed in terms of its natu-
ral frequencies and loss factor, determined by the speed
of sound and mass density of the fluid and the reverbera-
tion time of the cavity or the loss factor of the fluid. Note
that this is an analytical approach, such that the compu-
tational efficiency for cavities is very high. A cavity can
either be filled with a specific fluid (e.g. air, argon, kryp-
ton) or with a porous material. In case of a porous filling,
the porous material can be implemented as an equivalent
fluid, e.g. by using the Delaney-Bazley-Miki model [8,9],
which employs the flow resistivity to determine the com-
plex, frequency-dependent sound speed and mass density
of the equivalent fluid.

2.3 Coupling of wall leafs and cavities

Coupling of the wall leafs and cavities is achieved by em-
ploying the acoustical pressure in a cavity as an excitation
of the adjoining wall leaf, while the displacements of a
wall leaf are used as an excitation of the adjoining cav-
ity. Since modal approaches are used for both the wall
leafs and cavities, this coupling strategy is called a modal-
interaction model [6].

2.4 Diffuse sound insulation

The modal-interaction model finally allows the calcula-
tion of the diffuse sound insulation. This is not straight-
forward due to the finite wall dimensions, but a correct
calculation is achieved by employing the diffuse field reci-
procity relationship [12], so that the ensemble mean of the
sound transmission coefficient τ̂12 [10, 11] can be evalu-
ated as

τ̂12 =
8V1

cSπn1
Tr

(
D̃

(1)

dirD
−H
tot D̃

(2)

dirD
−1
tot

)
, (1)

with V1 the volume of the sending room, c the speed of
sound, n1 the modal density of the sending room and S
the surface area of the interface between structure and

room. Ddir denotes the direct field dynamic stiffness ma-
trix, whereas Dtot represents the total dynamic stiffness
matrix of the structure, including all wall leafs, cavities
and their coupling. The imaginary part of a matrix is de-
noted with a tilde.

3. VISCOELASTIC INTERLAYERS

Laminated glazing makes use of viscoelastic (poly-
mer) PolyVinylButyral (PVB) interlayers. The mechan-
ical properties of these PVB interlayers are not only
frequency-dependent, but they also depend on tempera-
ture. These effects can be accounted for by using the gen-
eralized Maxwell-Wiechert model and William-Landel-
Ferry model [3, 4], respectively.

3.0.1 Generalized Maxwell-Wiechert model

At the small-strain regime, viscoelastic effects can
be characterized efficiently by using the General-
ized Maxwell-Wiechert model, taking into account the
time/frequency-dependency of the shear modulus [5].
This model is constructed from parallel combinations of
a spring and a damper placed in series, which are placed
in parallel with a single elastic spring [13]. The elastic
springs in combination with the viscous dampers provide
dynamic stiffness in case of fast loading conditions, while
the elastic spring represents the quasi-static stiffness. The
elements in the Maxwell model can be derived experi-
mentally using dynamic mechanical analysis (DMA) [13].
The time-dependency of the shear relaxation modulus can
be expressed as [13]:

G(t) = G∞ +

n∑
i=1

Gi exp−t/τ , (2)

with G∞ the long-term shear modulus, Gi and τi the shear
modulus and relaxation time of a viscoelastic unit (spring-
damper pair), respectively. The number of viscoelastic
units is denoted by n. The properties of the viscoelastic
units are inversely related as follows:

τi =
ηi
Gi

. (3)

The long-term shear modulus is related to the instanta-
neous shear modulus G0 by [13]:

G0 = G∞ +

n∑
i=1

Gi. (4)
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Substitution of Eqn. (4) into Eqn. (2) yields [14]:

G(t) = G0 −
n∑

i=1

Gi (1− exp 1−t/τi) . (5)

The shear relaxation modulus in the time-domain G(t) can
also be expressed in the frequency domain as [5]:

G(ω) = G0 −
n∑

i=1

Gi

(ωτi)2 + 1
+ i

n∑
i=1

Giωτi
(ωτi)2 + 1

. (6)

This expression can be subdivided into the real part rep-
resenting the storage modulus, which determines the elas-
tic behavior. The imaginary part of the resulting expres-
sion constitutes the loss modulus, representing the energy
dissipation [5]. It has been demonstrated in [5] that the
storage and loss moduli of several types of viscoelastic
interlayer are subject to high differences due to the use
of specific additives and plasticizers, and to differences in
the measurement techniques.

3.0.2 Williams-Landel-Ferry equation

The dynamical shear modulus G(T, ω), which depends on
both temperature and frequency, obeys the following rela-
tion:

G(T, ω) = G(T0, αTω), (7)

with T0 = 20◦C the reference temperature. The hori-
zontal shift parameter αT [3, 4] is proportional to the loss
factor, given by

αT =
η(T )

η(T0)
. (8)

For most polymer systems, the loss factor η(T ) is well-
represented by the empirical Vogel–Fulcher law

η(T ) = B exp

(
TA

T − TV

)
, (9)

with TA the activation temperature and TV the Vogel tem-
perature. Combining both Eqn. (8) and Eqn. (9) leads
to [4]:

logαT = −C1
T − T0

T − T0 + C2
, (10)

with two constants C1 and C2, defined as

C1 = log e

(
TA

T0 − TV

)
and C2 = T0 − TV. (11)

Eqn. (10) was proposed by Williams, Landel and Ferry
and is known as the WLF equation. The influence of the

PVB temperature and the resulting variations in airborne
sound insulation of single laminated glazing is demon-
strated in Fig. 2, displaying clear variations up to 4 dB in
the frequency range around coincidence.
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Figure 2. Influence of temperature on the mechani-
cal properties of PVB and the resulting variations in
airborne sound insulation of 44.2 glazing.

4. VALIDATION

The model can be showcased effectively using (laminated)
glazing examples, since they contain all previously dis-
cussed elements: cavities and wall leafs including elastic
layers and viscoelastic interlayers. The assumed default
material properties of glass and the cavity fluids are listed
in Tables 1 and 2, respectively. Note that a loss factor of
η = 0.05 is assumed for the glass panes, which approxi-
mately consists of equal parts of internal losses and edge
damping [15], i.e. energy loss due coupling of the glass
panes through the mounting frame.

Table 1. Material properties of glass: density ρ,
Young’s modulus E, Poisson coefficient ν and loss
factor η.

ρ [ kg
m3 ] E [GPa] ν [−] η [−]

2500 62 0.24 0.05
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Table 2. Material properties of air and Argon: den-
sity ρ, sound speed c and cavity reverberation time
T .

ρ [ kg
m3 ] c [ms ] T (s)

Air 1.2 340 2
Argon 1.784 319 2

The simplest examples are single glass panes. Three
single glazing examples with thicknesses of 4mm, 10mm
and 19mm are simulated and validated with correspond-
ing laboratory measurements in Fig. 3. The simulations
successfully capture the physical behavior of the single
glazing, including the coincidence effect, resulting in ac-
curate single number ratings with a maximum deviation
of 1 dB.

Fig. 4 includes the results of simulations and labora-
tory measurements of two types of double glazing: 4-10-
4 and 6-12-8. Fig. 4 indicates that other than the coin-
cidence effect, also the mass-air-mass resonance is well-
predicted, which also results in an accuracy of 1 dB on the
single number rating.

Fig. 5 displays two examples of triple glazing: 4-
10A-4-10A-4 and 6-14A-4-14A-6. Contrary to the dou-
ble glazing examples, the cavities are filled with Ar-
gon instead of air to increase the airborne sound insula-
tion. The use of argon instead of air mainly affects the
anti-resonance peak just before coincidence, so around
1600−2000Hz in Fig. 5(a) and at approximately 1000Hz
in Fig. 5(b). Simulations have shown that the inclusion of
argon instead of air does indeed improve the sound in-
sulation at the anti-resonance frequency, where Fig. 5(a)
indicates that this improvement is underestimated, while
Fig. 5(b) suggests that the effect is correctly captured in
the simulations. This variance can possibly be attributed
to the niche effect [16]. Nevertheless, the prediction ac-
curacy of the simulations for triple glazing is still 1 dB, as
this niche effect at coincidence occurs at high frequencies
and thus has a small influence on the single number rating.

Several examples are included for laminated glazing,
both single (cfr. Fig. 6) and double (cfr. Fig. 7). The fre-
quency and temperature-dependent material properties of
the PVB interlayers are taken from [17], and it is assumed
that the temperature of the PVB equals 20◦ C. Three ex-
amples of laminated single glazing are displayed in Fig. 6:
33.2, 1212.2 and 10101010.6. The prediction accuracy

(a)
63 12

5
25

0
50

0
10

00
20

00
40

00
10

15

20

25

30

35

40

45

50

55

sim: R
w

(C,C
tr
) = 29(-1,-2)

meas: R
w

(C,C
tr
) = 30(-1,-3)

(b)
63 12

5
25

0
50

0
10

00
20

00
40

00
10

15

20

25

30

35

40

45

50

55

sim: R
w

(C,C
tr
) = 33(-1,-2)

meas: R
w

(C,C
tr
) = 33(-1,-2)

(c)
63 12

5
25

0
50

0
10

00
20

00
40

00
10

15

20

25

30

35

40

45

50

55

sim: R
w

(C,C
tr
) = 36(-1,-3)

meas: R
w

(C,C
tr
) = 37(-1,-3)

Figure 3. Single glazing: simulation (black) and lab-
oratory measurement (grey). (a) 4mm, (b) 10mm
and (c) 19mm.
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Figure 4. Double glazing: simulation (black) and
laboratory measurement (grey). (a) 4-10-4 and (b)
6-12-8.

for each of the examples is comparable to non-laminated
glazing (cfr. 1 − 2 dB), indicating that both the glazing
properties and the assumed frequency and temperature-
dependent material properties of the PVB interlayers per-
form with high accuracy within the prediction model.

The two validation examples for laminated dou-
ble glazing provide an increasing order of complexity:
Fig. 7(a) contains the results for 4-6-33.1 glazing, which
has only one laminated glass panel, whereas the results for
double glazing with two laminated glass panels (33.2-12-
55.2) is displayed in Fig. 7(b). The simulation results for
both validation examples contain a spectral shape which is
very similar to the measured laboratory values. It is clear
that the mass-air-mass resonance and the coincidence phe-
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Figure 5. Triple glazing: simulation (black) and lab-
oratory measurement (grey). (a) 4-10A-4-10A-4 and
(b) 6-14A-4-14A-6.

nomenon are correctly simulated and that the sound insu-
lation in the intermediate frequency range as well as low
frequencies is accurately predicted. At frequencies above
coincidence, however, the simulations indicate a signifi-
cantly higher sound insulation than measured in the labo-
ratory. This can be attributed to transmission through the
mounting frame, which is not included in the simulations.
This influence can generally be seen in glazing with high
sound insulation, such as the triple glazing in Fig. 5 where
this overestimation at high frequencies is also observed.
As this effect only appears above coincidence, its influ-
ence on the single number rating is very limited, resulting
in a prediction accuracy of 2 dB for both examples of the
laminated double glazing.
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Figure 6. Laminated single glazing: simulation
(black) and laboratory measurement (grey). (a) 33.2,
(b) 1212.2 and (c) 10101010.6.
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Figure 7. Laminated double glazing: simulation
(black) and laboratory measurement (grey). (a) 4-
6-33.1 and (b) 33.2-12-55.2.

5. CONCLUSIONS

In this paper, a robust and efficient prediction method for
determining the sound insulation of multilayer structures
is presented, with a particular focus on glazing examples.
The proposed method accounts for various factors such as
arbitrary layering, finite dimensions, boundary conditions,
and frequency- and temperature-dependent material prop-
erties. The results show that the prediction method can
achieve an accuracy of 1− 2 dB in the single number rat-
ing using predefined values from a material database, and
even higher accuracy is attainable when material proper-
ties are determined from testing. The method successfully
captures key physical phenomena such as the mass-air-
mass resonance and the coincidence effect, by using elas-
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todynamics and accounting for material properties that
may depend on frequency and temperature, providing reli-
able predictions for (laminated) single, double, and triple
glazing configurations. In addition to the accuracy, the
predictions maintain a low computational cost due to the
modal approach

The ability to accurately and efficiently predict sound
insulation is crucial for optimizing design configurations
and exploring new materials and various material proper-
ties. This method offers a valuable tool for engineering
offices and manufacturers, enabling them to reduce the
reliance on costly and time-consuming laboratory mea-
surements. By providing a more efficient alternative,
the method facilitates the exploration and optimization
of acoustic solutions for specific situations. Future work
could focus on further expansion of the model to account
for additional complexities, such as the influence of frame
transmission, double walls with flexible studs, lightweight
floors and periodic structures.
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