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ABSTRACT

We propose a novel approach for simulating acoustic wave
propagation across multiphase media with a diffuse in-
terface model. Extending Discontinuous Galerkin Spec-
tral Element Methods (DGSEM) for the incompressible
Navier-Stokes/Cahn-Hilliard systems, our approach in-
corporates a modified weakly compressible formulation
that accommodates phase-dependent sound speeds. Nu-
merical experiments demonstrate spectral convergence for
Snell’s law in 2D. This work aims to advance high-fidelity
simulations of acoustic propagation in multiphase systems
and has implications for marine aeroacoustics and related
fields.

Keywords: High order discontinuous Galerkin, Artificial
compressibility, Multiphase, Diffuse interface, Navier-
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1. INTRODUCTION

Modeling acoustic wave propagation in heterogeneous
media has applications in medicine, aeroacoustics, hy-
droacoustics, and industry [1-8].

Diffuse interface phase-field models are garnering at-
tention in multiphase modeling, offering an alternative to
sharp interface methods like volume of fluid and level set.
Initially designed for cases where interface thickness is
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comparable to physical scales, diffuse interfaces have re-
cently demonstrated advantages in broader scenarios [9].

This work employs the high-order discontinuous
Galerkin spectral element method (DGSEM), known
for low numerical dissipation and provable stability
across various equations. Traditional incompressible
flow solvers rely on splitting schemes, which yield non-
physical pressures, whereas weak compressibility formu-
lations introduce an additional equation coupling velocity
and pressure fields [10,11]. Although initially a numerical
tool, weak compressibility has been adapted for accurate
acoustic wave propagation [12, 13]. However, its applica-
tion in multiphase acoustics remains unexplored.

We extend our previous DGSEM work on incom-
pressible Navier-Stokes and Cahn-Hilliard systems by in-
troducing a weak compressibility-based approach for di-
rect acoustic wave propagation across media. Our for-
mulation allows for different sound speeds in each phase,
separated by a diffuse interface. The method is validated
against acoustic refraction following Snell’s law, while
also analyzing spectral convergence. This research is de-
rived from the broader investigation outlined in [14].

2. MATHEMATICAL MODEL

We build over our previous work on a two-phase, entropy-
stable DGSEM iNS/CH model with artificial compress-
ibility, originally developed for high-density ratios [15],
by modifying the artificial compressibility equation to ac-
commodate variations in sound speed across phases.

The concentration ¢ € [0, 1] of each phase is provided
by the diffuse-interface Cahn-Hilliard equation:

e+ V- (cu) = MyV?p, (1)
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1 1s the chemical potential, given by:
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such that o is the surface tension, ¢ is the diffuse interface

width, and ¢cy is an additional chemical characteristic

time parameter that relate to the mobility parameter M

through:
My = —

3

The advective velocity u in equation (1) couples the
Cahn-Hilliard equation with the Navier-Stokes equation:

oten .
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where p is the pressure, g represents gravitational acceler-
ation, p is the density, and 7 is the viscosity. Previously,
weak compressibility was used to enforce the incompress-
ibility constraint; however, we now leverage it to propa-
gate pressure with the appropriate acoustic speed. Assum-
ing isentropic conditions and a low Mach number regime,
the pressure equation is formulated as [16]:

Op+ pa®V -u =0, ®)

where a denotes the speed of sound.

The coupled system of equations (1), (4), and (5) de-
fines the multiphase iNS/CH model and will be discretized
with an entropy stable DGSEM formulation. Consult [15]
for details on disciritization.

3. NUMERICAL EXPERIMENTS

The setup for the numerical experiments is given in Fig. 1
of an incident wave propagating from the left, incident on
the diffuse interface slanted at an angle. The signal hits
the interface with an angle of incidence 6;. The analyti-
cal expression for the angle of transmission 6, is given by
Snell’s law:

sin(6;)

ay

_ sin(6y)

. (©6)

The incident signal is generated by adding a source term
to the pressure equation:

az

r — X
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where f is the frequency, xq is the position and b is the
width of the forcing. A probe is placed on the right of the
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Figure 1. Setup

interface and is meant to monitor the incident wave and
compute the numerical angle of transmission.

We ran on a number of meshes with varied polyno-
mial order p and for an incident angle 6; = 10° and fre-
quency of 1 kHz. The simulation parameters are as fol-
lows. For Fluid 1, the density is p; = 1kg/m?, the speed
of sound is a; = 343ms~!, and the viscosity is 7; =
106 Pas. For Fluid 2, the density is p2 = 2kg/m3,
the speed of sound is ay = 1481 ms~!, and the viscosity
is 7o = 1076 Pas. The interface parameters are given
by an interface thickness of ¢ = (.01 m, a surface ten-
sion of ¢ = 107 Nm™!, and a mobility coefficient of
My =0.01 Pa ts 1.
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Figure 2. Errors for the angle of transmission for an
incident angle 6; = 10° and 1 kHz

Fig. 2 shows spectral convergence towards Snell’s
law. It is evident that for the same number of degrees of
freedom, coarse meshes with high polynomial order yield
lower errors than fine meshes with low polynomial order.
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Fig. 3 shows the pressure field at the end of the simu-
lation for the finest mesh. It shows qualitative agreement
with Snell’s law as the wave front changes direction.
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Figure 3. Pressure field at the end of the simulation,
f; = 10° and 1 kHz

4. CONCLUSIONS

We have developed a novel framework for simulating
acoustic wave propagation through multiphase media us-
ing a diffuse interface approach. By extending the Dis-
continuous Galerkin Spectral Element Method (DGSEM)
to incorporate weakly compressible formulations, we al-
low for phase-dependent sound speed variations. Our re-
sults validate the method against Snell’s law in two di-
mensions, demonstrating spectral convergence and high-
lighting the potential of diffuse interfaces for high-fidelity
acoustic simulations.
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