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ABSTRACT

The growing concern about acoustic monitoring in do-
mains such as construction site supervision, drone track-
ing or wildlife sighting calls for the enhancement of
acoustic scene description. Combining source localiza-
tion and statistical learning, the position, the level, and the
identity of each source present in the scene can be pre-
dicted. Source localization brings together microphone
array and acoustic imaging techniques to draw acoustic
maps. Moreover, time-domain techniques such as Delay-
and-Sum beamforming or CLEAN-T allow to extract au-
dio signals of each source present in the scene. Once
each source is localized and isolated, deep-learning mod-
els based on Transformer architectures are used to iden-
tify the collected sound sources. These models mainly
rely on neural networks fed with time-frequency spectro-
grams. However, based on the source energy, the men-
tioned phased-array techniques may fail at localizing im-
pulsive or tonal sources in intricate acoustic scene, which
tend to vanish in the background noise. Therefore, a novel
time-deconvolution technique denoted as CLEAN-STFT
and based on CLEAN-T algorithm, is proposed to reveal
low-energy that would not emerge previously. Taking ad-
vantage of both time and frequency dimensions of targeted
source spectrograms, this method allows a refined de-
scription of acoustic scene and can seamlessly feed deep-
learning algorithms.

Keywords: source separation, acoustic imaging, acoustic
scene description).

1. INTRODUCTION

The description of acoustic scenes is based on the
localization, level estimation and separation of the noise
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sources present, enabling their nature to be identified
using sound recognition models. This problem arises
in various contexts, particularly for acoustic monitoring
solutions [1]. The main challenge lies in the ability
to handle sources of diverse nature (broadband, tonal,
impulse, stationary, etc.), some of which can overlap
in time-frequency domain, complicating the analysis of
acoustic scenes.

Existing approaches that address sound scene de-
scription come into several categories. They include
single-microphone methods such as non-negative matrix
factorization (NMF), based on mathematical and signal-
processing techniques [2, 3], and deep-learning source
separation models such as SUDO [4]. However, these
methods have limitations in terms of source separation
performance and are unable to localize sources. Other
approaches exploit a small number of microphones
while combining deep learning, localization and source
identification. This strategy is receiving growing interest,
particularly in the DCASE (Detection and Classification
of Acoustic Scenes and Events) community. However,
the performance of these methods remains limited at this
stage, mainly due to the interdependence between the
localization and identification stages [5, 6].

Acoustic imaging methods based on microphone
arrays offer several advantages for the description of
sound scenes. They can be used to locate sources in a
scene, estimate their sound level and separate them from
background noise, while improving the performance
of sound recognition models. In particular, the spatial
filtering of antennas enhances the signal-to-noise ration
(SNR) of targeted source signals [7]. In addition, the
spatial separation of sources provides a polyphonic
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description of acoustic scenes.

Among acoustic imaging methods, the frequency-
domain approach is effective at locating sources and
quantifying sound levels, but it does not directly recon-
struct the temporal signals required by sound recognition
algorithms. An alternative is to combine these methods
with a temporal approach: first accurately locate sources
in the frequency domain, then, in a second step, extract
signals at the locations identified using a temporal ap-
proach [8—10]. This approach allows the use of algorithms
such as conventional beamforming [11], high-resolution
methods such as MUSIC [12] or CAPON [13], as well
as deconvolution techniques such as DAMAS [14] or
CLEAN-SC [15]. Each method has its own advantages
and limitations. Conventional beamforming, while robust,
has poor low-frequency resolution and method-related
artifacts. MUSIC offers better resolution, but requires
prior knowledge of the number of sources, making it
unsuitable for automatic monitoring applications. Other
methods, such as CLEAN-SC, DAMAS or CAPON, can
also be used.

However, a stringent temporal approach can be used,
enabling signals from different sources to be located and
extracted in a single step, making the method process
much simpler. Even though it is slower and more costly
than frequency-based methods, the temporal approach
offers a number of advantages. As mentioned by
Jaeckel [16], this approach enables all frequencies to be
processed simultaneously, making it particularly suitable
for broadband sources. It does not require long signals,
and facilitates the correction of the Doppler effect, a
much more complex task in the frequency domain.
CLEAN-T [17], based on a temporal deconvolution
principle, offers a robust solution for separating the
individual contributions of sources in a complex envi-
ronment, enabling identification of their nature, as well
as description of their location and level. The method is
not automatic, however, and requires a pre-filtering step.
Indeed, CLEAN-T localizes sources based on the entirety
of the measured signals, and requires frequency or time
filtering to highlight tonal or impulse sources.

To improve source separation and identification,
CLEAN-STFT method is proposed and will be presented
in section 2. By simultaneously exploiting the temporal
and frequency dimensions of spectrograms, this approach
uses an adaptive filtering to highlight low-intensity
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sources, whether impulsive, tonal or masked by ambient
noise. By combining this method with deep learning
models detailed in section 3, it is then possible to
obtain a fine description of sound scenes, opening the
way to advanced applications in acoustic monitoring,
environmental surveillance and automatic identification
of sound sources. Results of the method will be presented
in section 4, before concluding with performance and a
discussion of the method in section 5.

2. CLEAN-STFT

The proposed method for describing acoustic scenes
is based on spatial filtering and source separation us-
ing CLEAN-STFT, followed by identification using deep
learning models.

2.1 Beamforming delay-and-sum

The first step is to locate and quantify sound sources in
a given scene using acoustic imaging methods. CLEAN-
STFT is based on the beamforming delay-and-sum (DAS)
technique, which exploits signals measured by a micro-
phone array. It is used to estimate the acoustic level of
equivalent sources placed at the nodes of a scan grid, rep-
resentative of the acoustic scene. In this study, the config-
uration proposed to illustrate the method is shown in Fig.
1.

@ Sources

| Ittt

X

Microphone array Scan grid

Figure 1. Microphone array (Simcenter Sound Cam-
era) with a scan grid (here a 2D computational plane
representing a portion of space), with three station-
ary noise sources

DAS beamforming consists of the following steps:
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1. The sound field is measured by a microphone array.

2. Knowing the distances between each microphone
and each point on the calculation grid, a correction
for sound wave propagation delays is made for each
grid node/microphone pair.

3. The phased-shifted signals are summed and aver-
aged to obtain a temporal signal focused on each
point of the calculation grid.

This technique reconstructs the temporal signal at
each point on the calculation grid. The acoustic level is
averaged, and the location of sound sources is estimated
by identifying the nodes with the highest levels, taking
secondary lobes into account. The latter correspond to ar-
tifacts caused by the limited resolution of the microphone
antenna.
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Figure 2. Acoustic map obtained with delay-and-
sum beamforming.

The acoustic scene studied in this paper includes three
sound sources: a crow cawing at top left, a helicopter
in the center and a dog barking at top right. However,
due to its impulsive nature and low energy, the barking
is masked, blended into a side lobe of the main sources.
The acoustic map obtained after beamforming in Fig. 2
shows the main and side lobes associated with the various
sources.

2.2 Temporal deconvolution

Temporal deconvolution improves the resolution of
acoustic maps by removing artifacts associated with the

antenna response, notably the side lobes and most of the
main lobe, except for its maximum. As a result, real
sources can be more accurately extracted, including for
the delay-and-sum beamforming seen in part 2.1.

In the frequency domain, this corresponds to the
CLEAN-SC algorithm, while in the time domain, de-
convolution is performed by the CLEAN-T algorithm.
The latter identifies and successively subtracts dominant
sources, while cleaning up their contribution to the resid-
ual acoustic map. The method is based on the following
steps :

1. Imitialization : Two maps are initialized. The first
one, called dirty map, corresponds to the raw re-
sults of DAS beamforming and contains the resid-
ual contributions of the sources. The second, the
clean map, is initially empty and stores the sources
deconvoluted during iterations.

2. Identification of dominant source: In the
CLEAN-T algorithm, at each iteration, the source
with the highest average integrated level is identi-
fied as dominant. Another approach is adopted for
CLEAN-STFT, developed in section 2.3.

3. Repropagation and subtraction: The signal from
the dominant source is obtained via DAS beam-
forming, then repropagated to the microphones to
estimate its exact contribution. This contribution is
then subtracted from the signals measured by the
antenna, eliminating the artifacts associated with
this source on the map. The deconvoluted source
is then added to the clean map.

4. Successive iterations: The process is repeated for
the next dominant source, until a predefined stop-
ping criterion is reached. This criterion can be a
maximum number of sources, a minimum residual
energy threshold or a given display dynamic.

Using this iterative process, temporal deconvolution
improves the accuracy of acoustic maps by removing side-
lobes and keeping only the location of real sources, as
shown in Fig. 3.

2.3 CLEAN-STFT
2.3.1 Passing in time-frequency domain

In an automated monitoring context, CLEAN-T, based
on the total energy of the temporal signal, does not
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Figure 3. Results by iteration of the CLEAN-T tem-
poral deconvolution method.

directly discriminate between different categories of
sound sources. Thus, to detect specific sources, such
as tonal or impulsive sources in a noisy environment,
signal pre-filtering is required to isolate the relevant
frequency band or temporal characteristics. This process
requires prior knowledge of the properties of the target
source [18]. The CLEAN-STFT method is an extension
of CLEAN-T that applies to the field of short-time Fourier
transforms (STFT), i.e. frequency and time. The method
features adaptive time-frequency windowing to highlight
all sources in the acoustic scene.

The method is based on temporal deconvolution with
the following principle:

1. The time-domain signal at each grid point is ob-
tained using DAS beamforming. After applying a
STFT to all signals, a set of spectrograms is com-
puted for all grid points, as illustrated in Fig. 4.

2. In the proposed method, a pixel corresponds to a
point in the time-frequency domain. The number
of pixels is equal to the number of frequency bins
multiplied by the number of time increments in the
spectrogram.

3. For each time-frequency pixel in a spectrogram as-
sociated with a grid point, its level is compared
to the corresponding pixels across all spectrograms
(Figure 5). Only the pixels with the maximum am-
plitude are retained, forming a maximized spectro-
gram in the direction of each grid point. If no pixel
reaches a maximum at a given position, the corre-
sponding spectrogram remains empty (Figure 6).

EURONOISE

Beamforming DAS

Figure 4. Estimation of focused signals using DAS
beamforming in the time-frequency domain with
Short-Time Fourier Transform.
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Figure 5. Selection of the maximum level of a time-
frequency pixel to define the dominant direction.

4. The inverse Short-Time Fourier Transform (iSTFT)
can then be applied to reconstruct a focused time-
domain signal for each grid point from these max-
imized spectrograms. It is important to note that
this time-domain signal differs from the initial sig-
nal obtained through DAS beamforming: here, it
represents the signal whose time-frequency contri-
butions are maximized in the direction of the grid
point, rather than simply a weighted sum of the re-
ceived signals.

2.3.2 Temporal deconvolution

Finally, the temporal deconvolution process described in
Section 2.2 is applied to the signals obtained from the
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Figure 6. For each grid point, we obtain maximized
spectrograms in their respective directions.

iSTFT of the maximized spectrograms. This process uses
the pixel size of the spectrogram as the time-frequency
window, allowing the emergence of sources with limited
extent in this domain. Moreover, thanks to temporal
deconvolution, it becomes possible to separate signals
that were initially masked by others in the time-frequency
domain after several iterations.

1. First, the dominant source is identified by locating
the spectrogram containing the pixel with the max-
imum energy.

2. The contribution of the dominant source is re-
moved through temporal deconvolution.

3. The process is repeated iteratively until all sources
are isolated or a stopping criterion is reached (Fig-
ure 7).

This method allows the iterative extraction of the var-
ious sound sources present in a complex acoustic scene.
The adaptive filtering provided by the time-frequency
pixel resolution is especially effective for impulsive or
frequency-restricted sources. It allows, for example, the
emergence of sounds such as a dog barking, which would
not be detected using Beamforming DAS or CLEAN-T
with identical parameters (Figure 8).

3. SOUND IDENTIFICATION

After separation, the extracted sources are analyzed to
identify their nature (speech, music, noise, etc.). This
classification is achieved using a recognition model based
on neural networks. The model used is based on the
Vision Transformer (ViT), a deep learning architecture
developed for image classification. This model is adapted
and trained for spectrogram recognition to identify
different sound sources [19].

The following steps are applied to predict the nature
of a sound source:

» Time-frequency spectrograms representing each
sound source, from CLEAN-STFT calculation are
considered as images, input data of the deep learn-
ing algorithm.

* They are converted to the MEL scale, which mim-
ics human perception of sound.

* They are then divided into patches (small square
windows), while keeping their temporal and fre-
quency position indices as a vector.

» The model learns to identify specific acoustic struc-
tures in these patches (high-pitched sounds, tran-
sients, etc.) on the basis of a large dataset of labeled
spectrograms on which it has learned to recognize
acoustic features.

 Signal analysis by the transformer assigns a proba-
bility score to each class in the model. The highest
score indicates the most probable class.

Transformers offer many advantages:

e While convolutional neural networks (CNNs) an-
alyze relationships between successive temporal
sequences, transformers can establish correlations
between temporally distant spectrogram patches.

* The transformer model uses spectrogram patches
for identification, so it can handle signals of vari-
able duration.

e The model used reached an accuracy of 93% on
the ESC-50 dataset, which contains 2,000 environ-
mental sounds divided into 50 classes [20]. This
performance is due to its ability to model complex
sound structures.
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Figure 7. Temporal deconvolution using CLEAN-STFT for the three sources in the scene, with each source
accompanied by an icon representing its nature. At iteration 4, the remaining spectral energy of the helicopter,
which was previously masked by the more energetic crow caws, is recovered.
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Figure 8. Acoustic map obtained with CLEAN-
STFT.

4. RESULTS

To evaluate the proposed method, simulations were con-
ducted using Python to simulate source propagation and
generate various acoustic scenes. The sources used come
from the ESC-50 dataset, which contains environmental
sounds of diverse categories. The scene studied here in-
cludes three spatially close sources:

* A helicopter, a continuous broadband source.

* A crow, an impulsive, broadband source.

* A dog barking, whose energy is restricted in time-
frequency space.

2.0
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Figure 9. Ground truth of sound scene simulation.

This case study is particularly interesting, as the
three sources share part of the time-frequency space,
making separation complex. In particular, the dog’s bark
is masked by both the crow and the helicopter. This
situation illustrates the efficiency of CLEAN-STFT in
separating overlapping sources in the time-frequency
domain, as well as the contribution of adaptive filtering,
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which automatically extracts the bark despite its initial
masking. The case and its ground truth are illustrated in
Fig. 9.

The scene prediction is shown in Fig. 10. The per-
formance obtained is satisfying, with the error on level
estimation below 1%, while source localization and iden-
tification are correct. These results, and many others not
presented here, confirm the validity of the method in a
simulation framework. However, a study on a large set
of simulated acoustic scenes is still required, as well as
experimental validation to confirm the robustness of the
model in real-life conditions.
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Figure 10. Result of the predicted acoustic scene.

5. CONCLUSION

The CLEAN-STFT method improves the description of
sound scenes in acoustic monitoring by using adaptive fil-
tering and exploiting the temporal and frequency dimen-
sions of signals. It enables the isolation of sound sources
restricted in time-frequency space, such as impulsive or
tonal sounds, which are often masked by ambient noise,
and so improves source separation. However, this method
is still limited to stationary environments, and needs to be
improved to handle dynamic scenes, such as tracking the
trajectories of moving sources. Future work should focus
on applying this method to real, more complex and mo-
bile acoustic scenes, in order to test its performance under
a variety of conditions.
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