

FORUM ACUSTICUM EURONOISE 2025

ActaReBuild MSCA-DN PROJECT - ACOUSTIC AND THERMAL RETROFIT OF OFFICE BUILDING STOCK IN EU

Vojtech Chmelik^{1*}

Monika Rychtarikova^{1,2}

¹ Department of Materials Engineering and Physics, Faculty of Civil Engineering, STU Bratislava, Slovakia

² Department of Architecture, KU Leuven, Campus Brussels and Ghent, Belgium

ABSTRACT

MSCA Doctoral Network projects are essential in fostering international collaboration and developing interdisciplinary, innovative solutions. The Horizon MSCA-DN project “ActaReBuild” advances sustainable retrofitting solutions for office buildings in Europe.

The unique feature of this project is that it addresses both the acoustic and thermal performance of buildings in their conversion to other uses.

The project consists of ten Individual Research Projects performed by ten Doctoral Candidates (DCs) under joint PhD supervision.

Research within “ActaReBuild” includes developing innovative materials such as customisable mycelium bio-composites, recycled plastic composites, bio-based materials optimised for acoustic and thermal performance and metamaterials. It addresses novel solutions to improve low-frequency airborne sound insulation in lightweight constructions and refines descriptors for airborne sound insulation of facades, addressing spectral and temporal noise features. In the framework of the project, advanced measurement techniques for remote in-situ measurements for building facades are developed. It explores the balance between airtightness, energy efficiency, and acoustic performance and application on biotic materials for lightweight building envelopes, which significantly reduce embodied carbon and support circular economy principles.

Keywords: *building retrofit, acoustics, thermal physics, MSCA-DN*

1. INTRODUCTION

ActaReBuild project is MSCA – DN (Doctoral Network). The scheme aims to train 10 highly skilled doctoral candidates, fostering their creativity, enhancing their innovative abilities, and boosting their employability for the future [1]. Candidates are enrolled in joint PhD programmes and are supervised by joint supervisory committees. The ActaReBuild project started on 1st September 2022 and is a 4-year project funded under the Horizon Europe scheme.

2. BACKGROUND

Recent European research initiatives have focused on mitigating climate change by implementing energy-efficient building retrofits to achieve near-zero energy use and reduce urban heat islands [2-3]. Although these projects have achieved notable advancements in material and energy efficiency, acoustic performance is often overlooked. Long utilised in construction, recent advancements in bio-composites have enhanced traditional biomaterials like wood, straw, and mud [4-7]. A promising method utilizes mycelium-based composites made from agricultural waste, offering the potential for excellent acoustic absorption while replacing non-renewable materials [8]. A well-known example of sustainable material reuse involves incorporating

*Corresponding author: vojtech.chmelik@stuba.sk.

Copyright: ©2025 Chmelik et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0

Unported License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

FORUM ACUSTICUM EURONOISE 2025

rubber or plastic to create various products that dampen vibrations in floating floor systems [9], and there is also a possibility of using such material in the concrete industry [10-12]. However, the acoustic and thermal performance of materials like granulated plastic and glass [13] requires more research.

In addition to material innovation, phase change materials (PCMs) aid in passive thermal regulation by stabilising indoor temperatures and lowering energy usage [14]. Acoustic metamaterials, designed for targeted sound insulation, show potential for lightweight partition systems; however, they are still largely overlooked in extensive building retrofits [15]. Another developing technology is ethylene tetrafluoroethylene (ETFE) cushion systems, commonly utilised in lightweight façade and roofing applications for their transparency and energy efficiency [16]. Despite this, the acoustic properties of large ETFE structures are still not adequately characterised since conventional room-based tests [17] are inappropriate for them. Advanced in-situ measurement techniques, such as surface impedance measurement with intensity probes or laser Doppler vibrometry (LDV), provide potential solutions [18-19].

Acoustic assessment methodologies also require refinement. Existing sound insulation descriptors, such as Single Number Quantities (SNQs) defined in ISO 717 [20], are often not sufficient for evaluating modern lightweight and hybrid materials, particularly at low frequencies [21]. Furthermore, Life Cycle Analysis (LCA) is increasingly recognized as essential for assessing the sustainability of construction materials, with studies indicating that substituting traditional materials with bio-based alternatives, such as timber, can halve the embodied carbon footprint [22]. However, guidelines for incorporating these materials into large-scale retrofit projects remain underdeveloped.

3. FOCUS OF THE PROJECT AND RECENT FINDINGS

So far, the following results have been obtained. Research, where myco-materials were developed using *Pleurotus Ostreatus* mycelium grown in various natural substrates, was performed. The materials have undergone testing for compression and tensile strength as well as thermal conductivity. The study highlights the potential of agricultural residues for sustainable construction, with sugarcane bagasse composites exceeding other samples in strength and insulation. While drying and autoclaving are still CO₂-intensive, solar drying could reduce the environmental impact. Despite challenges in scaling,

mycelium's ability to bind waste materials makes this method economically attractive [23]. Another study has been performed which examined the degree of accuracy on the tortuosity of a porous material using ultrasound transmission measurements. Compared to pulse measurements, the method shows improvement in signal quality. Subsequently, various configurations of tilt angle and transducer spacing were examined, and the results obtained were comparable to other studies dealing with the characterization of tortuosity [24].

Experiments on the performance of a novel bio-based material in terms of sound transmission, sound absorption coefficients as well as thermal properties were conducted. The results showed improvement in monitored parameters in comparison with conventional materials. Several ideas of possible use were concluded [25-27].

The experiments on the acoustic performance of recycled material in the form of loose plastic granules – ethylene-vinyl acetate, polyethene, and polystyrene – were performed. The measurements showed the possible alternative to conventional materials while addressing the waste disposal challenge [28]. Furthermore, the waste material was used to fill cavity resonators. Because of their sound absorption performance, they could be used as an alternative to fibrous materials, although only in exterior applications such as noise barriers [29].

Another part of the project's research focuses on applying PCMs in building construction. The results of the investigations involve composite components that are created by impregnating a highly porous material with two different paraffinic PCMs. The findings emphasize calcium silicate panels as a possible host material for PCMs [30].

A comparative study of various methods for calculating the transmission loss of double panels with the application of metamaterial, demonstrating the broader applicability of the transfer-matrix method in predicting transmission loss, was conducted [31]. The following research was aimed at the possibility of improving the sound transmission loss of a metamaterial unit comprising a membrane with a centre mass used for sound insulation of heat pumps in residential buildings [32].

The use of the LDV method for estimating sound power, as well as the exploitation of the Nyquist-Shannon sampling theorem for pressure estimation criterion in flat plates, are shown in the next study [33].

The assessment of the life cycle of materials is another topic of interest in the framework of the project. The research published in [34] emphasizes the possibility of converting fibrous agricultural resources into insulation products that require less energy. It also investigates innovative methods such as electrospinning and additive manufacturing for bio-

FORUM ACUSTICUM EURONOISE 2025

based applications composites. The further study provides a foundational basis for developing methodologies to influence local policies that promote sustainable strategies [35].

The study related to the relevance of various listening test methodologies for evaluating the influence of façade sound insulation on the perception of outdoor noises was also presented [36]. Another study recommends better incorporating all aspects of noise annoyance in future listening test experiments based on the overview of the methodology and sound stimuli used in previous studies [37].

Two experiments on the relation between sound insulation performance and airtightness of constructive solutions were also conducted [38-39].

Another important topic addressed in the project is the life cycle of constructions based on ETFE foils/cushions. The published study on this topic assesses the environmental impact of ETFE foil's End-of-Life scenarios using LCA, emphasizing recycling as the preferred option while considering incineration if transportation emissions are too high [40]. A different study Analyzes uniaxial hysteresis tests on ETFE foil, revealing 33 years of wind load history, supporting material reduction, and validating the method while recommending bi-axial tests for accuracy [41].

4. REFERENCES

- [1] ACT-REBUILD Project, "Home," actarebuild.eu. [Online]. Available: <https://actarebuild.eu>. [Accessed: Apr. 7, 2025].
- [2] RECO2ST Project, "Home," reco2st.eu. [Online]. Available: <https://reco2st.eu>. [Accessed: Apr. 7, 2025].
- [3] COOL TOWNS Project, "Home," [cooltowns.eu](https://www.cooltowns.eu). [Online]. Available: <https://www.cooltowns.eu>. [Accessed: Apr. 7, 2025].
- [4] L. Chen, Y. Zhang, Z. Chen, Y. Dong, Z. Jiang, J. Hua, and P. S. Yap, "Biomaterials technology and policies in the building sector: a review," *Environmental Chemistry Letters*, vol. 22, no. 2, pp. 715–750, 2024.
- [5] J. T. Aladejana, Z. Wu, M. Fan, and Y. Xie, "Key advances in development of straw fibre bio-composite boards: An overview," *Materials Research Express*, vol. 7, no. 1, p. 012005, 2020.
- [6] C. Moletti, P. Aversa, A. E. Losini, G. Dotelli, M. Woloszyn, and V. A. M. Luprano, "Hygrothermal behaviour of hemp-lime walls: the effect of binder carbonation over time," *Building and Environment*, vol. 233, 2023. doi: 10.1016/j.buildenv.2023.110129
- [7] D. Alemu, M. Tafesse, and A. K. Mondal, "Mycelium-Based Composite: The Future Sustainable Biomaterial," *International Journal of Biomaterials*, vol. 2022, 2022. doi: 10.1155/2022/8401528
- [8] P. Stamets, *The role of mushrooms in nature: Culturing mushroom mycelium on agar media*, Hong Kong: Ten Speed Press, 2000.
- [9] European Commission, "Smart Resource Efficient Modular Building – ISOBIO," CORDIS, 2019. [Online]. Available: <https://cordis.europa.eu/project/id/821366>
- [10] M. Maaroufi *et al.*, "Characterisation of EPS lightweight concrete microstructure by X-ray tomography with consideration of thermal variations," *Construction and Building Materials*, vol. 178, 2018. doi: 10.1016/j.conbuildmat.2018.05.142
- [11] S. I. Basha, M. R. Ali, S. U. Al-Dulaijan, and M. Maslehuddin, "Mechanical and thermal properties of lightweight recycled plastic aggregate concrete," *Journal of Building Engineering*, vol. 32, p. 101710, 2020.
- [12] A. Poonyakan, M. Rachakornkij, M. Wecharatana, and W. Smittakorn, "Potential use of plastic wastes for low thermal conductivity concrete," *Materials*, vol. 11, no. 10, p. 1938, 2018.
- [13] F. Asdrubali, S. Schiavoni, and K. V. Horoshenkov, "A review of sustainable materials for acoustic applications," *Building Acoustics*, vol. 19, no. 4, pp. 283–312, 2012.
- [14] J. Čurpek and M. Čekon, "Climate response of a BiPV façade system enhanced with latent PCM-based thermal energy storage," *Renewable Energy*, vol. 152, pp. 368–380, 2020.
- [15] F. Cui, Z. He, J. Li, L. Zhang, and B. Assouar, "Acoustic metamaterials: Recent advances and future perspectives," *Advanced Functional Materials*, vol. 31, no. 29, p. 2101748, 2021. doi: 10.1002/adfm.202101748L
- [16] C. Maywald, "Sustainability—The Art of Modern Architecture," *Procedia Engineering*, vol. 155, pp. 238–248, 2016. doi: 10.1016/j.proeng.2016.08.025
- [17] ISO 10140-1:2021. *Acoustics — Laboratory measurement of sound insulation of building elements*.

FORUM ACUSTICUM EURONOISE 2025

Part 1: Application rules for specific products, International Organization for Standardization, 2021.

[18] N. B. Roozen, Q. Leclerc, D. Urbán, L. Kritly, and C. Glorieux, "Assessment of the sound reduction index of building elements by near field excitation through an array of loudspeakers and structural response measurements by laser Doppler vibrometry," *Applied Acoustics*, vol. 140, pp. 225–235, 2018.

[19] D. Urbán *et al.*, "Vibrometry assessment of the external thermal composite insulation systems influence on the façade airborne sound insulation," *Applied Sciences*, vol. 8, no. 5, p. 703, 2018.

[20] ISO 717-1:2020. *Acoustics — Rating of sound insulation in buildings and of building elements. Part 1: Airborne sound insulation*, International Organization for Standardization, 2020.

[21] B. Rasmussen and M. Machimbarrena, COST Action TU0901 – *Building acoustics throughout Europe. Volume 1: Towards a common framework in building acoustics throughout Europe*, 2014.

[22] C. Monticelli and A. Zanelli, "Life Cycle Design and Efficiency Principles for Membrane Architecture: Towards a New Set of Eco-design Strategies," *Procedia Engineering*, vol. 155, pp. 416–425, 2016.

[23] T. S. Gomez *et al.*, "Development of a myco-material based on textile and agro-industrial waste for thermal insulation," in *E3S Web of Conferences*, vol. 546, p. 03003, 2024.

[24] T. S. Gomez *et al.*, "Extraction of tortuosity of melamine foam from ultrasonic transmission measurements: experimental improvement," in *Proc. ISMA 2024 - International Conference on Noise and Vibration Engineering and USD 2024*, pp. 313–322, 2024.

[25] J. J. Garcia and E. A. Piana, "Exploring bio-recycled residues: Innovating sustainable building materials for acoustic retro-fitting," in *Proc. Int. Congress on Sound and Vibration*, 2024.

[26] J. J. Garcia, D. Tonetti, and E. A. Piana, "Sound reduction index of cardboard panels featuring a honeycomb paper core," in *Proc. Int. Congress on Sound and Vibration*, 2024.

[27] J. J. Garcia, D. Tonetti, and E. A. Piana, "Assessing the sound insulation and thermal performance of a partition based on recycled materials as a sustainable retrofitting solution for buildings," in *E3S Web of Conferences*, vol. 546, p. 03002, 2024.

[28] J. Potocar, D. Jun, S. Unčík, C. Glorieux, and M. Rychtáriková, "Acoustic properties of Helmholtz resonator filled with granulated polymer waste material," in *INTER-NOISE and NOISE-CON Congress and Conference Proceedings*, vol. 270, no. 2, pp. 9297–9304, Oct. 2024.

[29] J. Potočár, S. Unčík, C. Glorieux, and M. Rychtarikova, "Sound-absorbing properties of granulated plastic waste materials," in *Acoustics 2024 High Tatras*, Štrbské Pleso, Vysoké Tatry, Slovakia, pp. 93–96, Jun. 12–14, 2024.

[30] R. Cottone *et al.*, "Investigation of phase change material impregnation in a highly porous structure," in *Proc. Int. Assoc. of Building Physics*, pp. 455–460, Springer, Singapore, 2025.

[31] R. Zeng, E. Deckers, C. Glorieux, D. Urbán, and B. Chmielewski, "Wall-applicable metamaterial: mitigating resonance dip for enhanced sound transmission loss," in *INTER-NOISE and NOISE-CON Congress and Conference Proceedings*, vol. 270, no. 4, pp. 7144–7155, Oct. 2024.

[32] R. Zeng *et al.*, "Locally resonant metamaterial wall targeting tonal noise arising from heat pumps in residential buildings," in *Proc. ISMA 2024 - International Conference on Noise and Vibration Engineering*, pp. 2652–2661, Nov. 2024.

[33] A. Singh, V. Jandak, D. Urban, and O. Jiricek, "Experimental verification of sound power determination methods based on radiation matrix," in *INTER-NOISE and NOISE-CON Congress and Conference Proceedings*, vol. 270, no. 1, pp. 10183–10192, Oct. 2024.

[34] I. Nuvolari-Duodo *et al.*, "Integrated climate change mitigation and public health protection strategies: The case of the city of Bologna, Italy," *Int. J. Environ. Res. Public Health*, vol. 21, no. 11, p. 1457, 2024.

[35] I. Nuvolari-Duodo, M. Dolcini, M. Buffoli, A. Rebecchi, G. Dall’O, C. Monticelli, C. Vertua, A. Brambilla, and S. Capolongo, "Integrated climate change mitigation and public health protection strategies: The case of the city of Bologna, Italy," *Int. J. Environ. Res. Public Health*, vol. 21, no. 11, p. 1457, 2024.

FORUM ACUSTICUM EURONOISE 2025

- [36] M. Geluykens, H. Müllner, V. Chmelík, and M. Rychtáriková, “Listening test methodology for building acoustic issues,” in *Fortschritte der Akustik - DAGA 2024*, pp. 263–266, 2024.
- [37] M. Geluykens, H. Muellner, V. Chmelik, and M. Rychtarikova, “Airborne sound insulation and noise annoyance: Implications of listening test methodology,” in *Proc. Forum Acusticum 2023*, pp. 155–162, Sep. 2023.
- [38] A. Elsaei *et al.*, “Airtightness/airborne sound insulation study in accredited sound insulation facilities,” 2023.
- [39] A. Elasei, M. Machimbarrena, A. Meiss, and I. Pozas-Casado, “Exploring the correlation between airtightness and acoustic performance in building systems within certified sound insulation lab,” in *Proc. 30th Int. Congress on Sound and Vibration*, 2023.
- [40] K. Solanki, T. Balster, C. Monticelli, M. Á. Padilla Marcos, and C. Maywald, “Closing the loop: the influence of recycling of ETFE foils within the life cycle assessment (LCA) approach,” in *Proc. 6th Int. Conf. on Energy & Environment: Engineering and Economics*, pp. 504–509, 2024.
- [41] K. Solanki, T. Balster, C. Maywald, C. Monticelli, and M. Á. Padilla Marcos, “Evaluation of the wind load history of environmentally exposed ETFE foils,” in *Proc. IASS 2024 Symposium*, pp. 1–6, 2024.

11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

