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ABSTRACT

Aircraft noise annoyance is inherently subjective, and
its accurate quantification represents a challenging task.
There is a lack of consensus in the scientific community
regarding which metrics are best for effectively represent-
ing this type of annoyance. The present study aims at re-
lating various sound metrics to noise annoyance ratings
measured in listening experiments featuring 60 aircraft
flyover recordings (30 landings and 30 take-offs). This
is done by considering different sound quality metrics
(SQMs), psychoacoustic annoyance models, and more
conventional noise certification metrics, such as the ef-
fective perceived noise level (EPNL) or the sound expo-
sure level. A correlation analysis was subsequently per-
formed on a large pool of sound metrics considering both
linear and non-linear functions. The results show that,
in general, metrics derived from psychoacoustic annoy-
ance models (especially those proposed by Zwicker and
Di et al.) present considerably better correlations com-
pared to conventional metrics and most individual SQMs.
The metrics of loudness, EPNL, and maximum perceived
noise level (PNL) also exhibit strong correlations and ca-
pacity to predict a substantial portion of the variance ob-
served in the reported annoyance ratings. Moreover, con-
sidering non-linear functions (e.g. logarithmic or hyper-
bolic tangent power) further improves the prediction per-
formance.
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1. INTRODUCTION

Aircraft noise is the main source of annoyance for com-
munities living in the vicinity of airports and has expe-
rienced an increasing trend in the past decades, which is
in line with the prospects of continued growth of air traf-
fic. Previous studies have shown that environmental noise
exposure is correlated with severe health risks of strokes,
coronary heart disease, and cardiovascular diseases, but
also with psychosocial health concerns [1]. Furthermore,
it seems that aircraft-induced noise generates higher de-
grees of annoyance compared to road and rail noise [2],
which makes the need to address this issue particularly im-
portant. Despite the various technologies that have been
implemented in aircraft in the past decades, which have
mostly provided reductions in the engine noise levels [3],
the aircraft airframe is also responsible for a large por-
tion of the produced noise during landing. In the work
of Merino-Martı́nez et al. [4], the strong tonal compo-
nents arising from the Airbus A320 aircraft family’s nose
landing gear system were investigated, and it was found
that they were strongly correlated with the velocity of
the aircraft. Despite being perceived as highly annoying,
such tonal components are typically ignored in the aircraft
noise prediction models [5, 6].

Since noise annoyance is inherently subjective, there
is still a lack of consensus in the scientific community
regarding which sound metrics best capture the variance
in annoyance responses. In some cases, some metrics
are preferred over others with better performance due to
their simplicity in implementation [7]. Traditional energy-
based metrics, such as the Sound Pressure Level (SPL)
have been augmented via more complex metrics, such as
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the Effective Perceived Noise Level (EPNL) and the A-
weighted sound level, which take into account, to some
extent, the human perception of noise through spectral
irregularities, presence of tones in one-third-octave band
spectra, etc. However, it seems that even these enhanced
metrics fail to properly capture the large variance in an-
noyance responses. On top of all this, there is a correla-
tion between demographic factors and the reported noise-
induced annoyance, such as age, gender, background, in-
dividual noise sensitivity [8], as well as between visual
factors and annoyance [9], which hinders even more the
isolation of the main contributors toward the perceived an-
noyance.

Research in the field of psychoacoustics has bridged
a significant portion of the knowledge gap concerning the
subjective perception of sound through the emergence of
so-called sound quality metrics (SQMs) [10, 11], which
are computed based on the human’s auditory system’s
characteristics, such as its varying sensitivity to differ-
ent frequency bands. Starting from the five individual
sound quality metrics, namely loudness, sharpness, tonal-
ity, roughness, and fluctuation strength, several psychoa-
coustic annoyance models have been developed through-
out the years, such as those of Zwicker and Fastl [12], Di
et al. [13], and More [14]. This study aims at identify-
ing the sound metrics with the best annoyance predictive
performance. To this end, a psychoacoustic listening ex-
periment was conducted featuring 60 flyover recordings
of conventional turbofan aircraft. The obtained annoyance
raitings were subsequently employed in an exhaustive cor-
relation analysis, starting from a wide range of conven-
tional noise certification metrics, sound quality metrics,
and psychoacoustic annoyance models.

This paper presents a short summary of the MSc the-
sis of Buzeţelu [15], which also dealt with the use of ma-
chine learning and artificial intelligence for aircraft noise
annoyance prediction. The interested reader is referred to
that document for further information.

2. METHODOLOGY

2.1 Aircraft flyover recordings

The data used throughout the research consists of 60 air-
craft flyover recordings (30 take-offs and 30 landings)
measured at Schiphol Amsterdam Airport using a micro-
phone array. For this study, only data from one of the cen-
tral microphones from the array was considered. A sam-
pling frequency of 48 kHz was used. More details about

the experimental setup can be found in [4, 16].
The initial overhead altitudes ranged from a minimum

of around 100 m up to more than 400 m for take-offs and
from approximately 40 m to just over 100 m for landings,
which resulted in relatively high noise levels being mea-
sured. In order to limit the sound exposure for the partici-
pants in the listening experiments, all signals were scaled
to an overhead altitude of 1500 m, which translates to
equivalent A-weighted sound pressure levels (LA,eq) rang-
ing from 49.4 dBA to 70 dBA per audio file. The scal-
ing was performed considering spherical spreading and
atmospheric absorption corrections. Due to the relatively
smaller distance between the measured aircraft and the
microphone array, the time interval of interest for landings
was inherently shorter than for take-offs. The selected au-
dio files for the listening experiment had a duration of 16 s
for take-offs and 10 s for landings.

2.2 Listening experiment campaign

A listening experiment campaign was conducted in or-
der to obtain short-term annoyance responses from the
aircraft flyover recordings considered. The experiments
took place in the Psychoacoustic Listening Laboratory
(PALILA) at the Faculty of Aerospace Engineering of
Delft University of Technology, which is an extremely
quiet, highly insulated facility [17]. A graphical user in-
terface 1 ensured a smooth way of presenting the record-
ings to the participants while collecting the annoyance re-
sponses using the touchscreen of a laptop. An ICBEN
11-point scale was used to answer the following question:
”What grade from 0 to 10 best shows how much you would
be bothered, disturbed, or annoyed by the sound of the air-
craft in this recording?”. Before starting the experiment,
the participants were requested to imagine that they were
hearing the aircraft flyovers while at home or somewhere
in their (hypothetical) residential area in the vicinity of an
airport.

A total of 30 people participated in the experiment,
out of which 21 were male and 9 female, with an aver-
age age of 23 years old (and a standard deviation of 3
years). Moreover, 21 were students and the other 9 were
employed at the time of the experiment. All participants
were in good health condition and had good self-reported
hearing. The mean duration of the individual experiments
was just above 20 min and 30 s (with a standard deviation
of 2 min and 49 s). Compulsory breaks were also given to
the participants every 5 recordings to reduce fatigue. The

1 https://zenodo.org/records/11546254
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participants were requested to read and sign an informed
consent form, which was previously approved by the Hu-
man Research Ethics Committee from Delft University of
Technology (form number 3599).

The 60 flyover recordings were split into three sub-
sets of 40 recordings with a 50% overlap, and these were
rotated equally among all test subjects. In other words,
each person listened to 40 (20 take-offs and 20 landings)
of the 60 flyover recordings, and each individual recording
was evaluated by 20 people. Half the participants started
off with the 20 take-offs and ended with the 20 landings,
and vice versa. Additionally, within each of these two sets
(take-offs and landings) the order of the recordings was
completely randomised for each subject. The latter two
measures were taken to minimize any potential learning
effects of the listening order on the received annoyance
responses. Finally, all participants were compensated for
their time with a 10 e universal voucher upon completing
the experiment.

2.3 Correlation analysis of the annoyance ratings

The large pool of conventional noise metrics and SQMs
was calculated using the open-access MATLAB Sound
Quality Analysis Toolbox (SQAT) 2 . An overview of the
software can be found in [18].

The level of correlation of each metric with the noise
annoyance ratings from the listening experiments was as-
sessed by calculating both Pearson’s and Spearman’s cor-
relation coefficients. The former relates to linear correla-
tion, whereas the latter coefficient captures more complex,
non-linear dependencies. Their formulations are provided
in Eqs. (1) and (2), respectively, where xi and yi are,
respectively, the i-th data points of variables x and y;
x̄ and ȳ are the mean of the variables in consideration;
di denotes the difference between the two ranks of each
observation, and n the number of observations. Further-
more, an overview of the extracted conventional metrics
and SQMs using SQAT is provided in Tab. 1 3 and Tab. 2,
respectively. In total, 173 individual metrics (including

2 https://github.com/ggrecow/SQAT
3 It should be noted that, for the SQMs and psychoacoustic

metrics, several variations from the standard metrics were com-
puted, including the 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80,
90, 95th percentiles, as well as the maximum, minimum, stan-
dard deviation, and mean values. In the case of the psychoa-
coustic models, the scalar values (values calculated based on the
5th percentile values of the SQMs used in their respective calcu-
lations) were also considered.

their statistical variations) were computed per aircraft fly-
over recording.

RPearson =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(1)

RSpearman = 1− 6
∑

d2i
n(n2 − 1)

(2)

Table 1. Psychoacoustic metrics extracted from
SQAT.

Metric Explanation
N Loudness (ISO532-1) [19], [sone]
K Tonality, as per Aures [20], [t.u.]
S Sharpness (DIN45692) [21], [acum]
R Roughness, as per Daniel and

Webber [22], [asper]
FS Fluctuation Strength, as per Osses et

al. [23], [vacil]
PAZwicker Psychoacoustic Annoyance - Zwicker’s

model [12]
PADi Psychoacoustic Annoyance - model of

Di et al. [13]
PAMore Psychoacoustic Annoyance - More’s

model [14]

Table 2. Conventional noise metrics extracted from
SQAT.

Metric Explanation
EPNL Effective Perceived Noise Level,

[EPNdB]
PNLM Maximum Perceived Noise Level,

[PNdB]
PNLTM Maximum Tone-Corrected Perceived

Noise Level, [PNTdB]
LAeq , LBeq , LCeq ,

LDeq , LZeq

A, B, C, D, and Z weighted equivalent
Sound Pressure Level, [dB]

LAFmax, LBFmax,
LCFmax, LDFmax,

LZFmax

Maximum values of A, B, C, D, and Z
weighted fast-time weighting SPL,

[dB]
SELA, SELB,
SELC, SELD,

SELZ

A, B, C, D, and Z weighted Sound
Exposure Level, [dB]

As a further proxy for the predictive power of the
considered metrics, several functions were fitted between
them and the annoyance responses. The functions are
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given in Eqs. (3) through (6) 4 . The first is the simple
linear function (Eq. (3)) as normally employed in multiple
studies from the literature. The second is the 10-base
logarithmic function (Eq. (4)) because of the logarithmic
nature of many of the noise certification metrics [24].
Furthermore, the logistic (Eq. (5)) and hyperbolic tangent
power (Eq. (6)) functions were also fitted. The logistic
function was observed to be particularly well-suited
for relating psychoacoustic annoyance models to the
percentage of highly annoyed people [25], whereas the
hyperbolic tangent has a similar S-like shape that could
also mimic typical results from psychoacoustic listening
experiments. All four functions are relatively simple
since the fits only require two parameters for tuning.

Linear:
PAexp = bx+ a (3)

Logarithmic (base 10):

PAexp = b log10 x+ a (4)

Logistic:

PAexp =
10

1 + e−k(x−x0)
(5)

Hyperbolic tangent power:

PAexp = 10|tanh(k · x)|b (6)

3. RESULTS & DISCUSSION

The annoyance ratings per operation (take-off and land-
ing) averaged within all participants of the listening exper-
iment are summarized in the form of a violin plot in Fig. 1.
The take-offs were perceived, on average, as slightly more
annoying than the landings, with overall average annoy-
ance ratings of 6.11 and 5.75, respectively. It was also
noticed that the spread in the obtained annoyance ratings
is larger in the case of take-offs, whereas most of the re-
sponses are generally concentrated between 5 and 7, indi-
cating that aircraft noise caused medium to high annoy-
ance in the conditions tested within this research. The
longer duration of the take-offs (16 s vs 10 s) may have
influenced the obtained results to some extent. Neverthe-
less, the results are mostly in line with the expectations,

4 Note that, in this case, PAexp denotes the mean psychoacous-
tic annoyance rating reported in the listening experiment, while
in the context of Tab. 1 it denotes metrics obtained from psy-
choacoustic annoyance models.

since the take-off audio files considered were also gener-
ally louder than the landings. Previous studies have shown
that metrics related to the magnitude of noise - as is the
case for loudness - tend to be crucial predictors for annoy-
ance, as far as environmental noise is concerned [12].

Figure 1. Violin plot of the listening experiment re-
sults. The width of the plot reflects the density of
the averaged annoyance data (per recording) at each
point. The purple dots denote the overall average
annoyance ratings. The box plot within the violin
plots consists of a white dot (median value), the box
(which is the interquartile range), and the whiskers
(lines extending from the box to show data points
within ± 1.5 times the interquartile range).

Table 3 lists the Pearson and Spearman correlation
coefficients for the metrics wich correlations higher than
0.80 5 . All correlations considered in this paper had a p-
value < 0.05. In general, metrics derived from psychoa-
coustics, along with the more complex conventional met-
rics, such as EPNL, PNLM, PNLTM, and some frequency
weightings of the SPL show the greatest predictive poten-
tial for the annoyance ratings. Interestingly, apart from

5 In the case of loudness and the metrics resulting from the
psychoacoustic models, there were multiple percentile values
with correlation factors above 0.80 (from the 1st to the 30th per-
centile). However, these metrics were all considered to be very
similar and their correlation factors were almost equal up to the
10th percentile, hence only the 5th percentile values (the ones
normally used in literature), were kept for further analysis and
denoted by the subscript ”5” . The standard deviation of N was
also considered and denoted as Nstd. The parameters PAZwicker,
PADi, PAMore are the scalar values of Zwicker’s, Di’s, and More’s
models, respectively, and their maximum values are denoted by
the subscript ”max”.
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loudness, N , none of the other four SQMs presented a
strong correlation on their own. These metrics are, how-
ever, taken into account within the three psychoacoustic
annoyance models, so their contribution is indirectly con-
sidered and perform, in general, better than N alone. This
finding perhaps explains that, on their own, these other
SQMs do not have a great predictive potential, but, when
combined, they are able to explain a large portion of the
variance. It is also a further confirmation of the fact that
environmental noise annoyance is difficult to quantify and
requires more sophisticated models, supporting the possi-
bility of bridging this gap with the use of more complex
tools like machine learning and artificial intelligence [15].

Table 3. Pearson and Spearman correlation coeffi-
cients (R), sorted in decreasing order (considering
the average value). All cases had a p-value < 0.05).

Metric Pearson
Correlation

Spearman
Correlation

PNLM 0.94 0.91
PA5Zwicker 0.93 0.92
PA5Di 0.93 0.92
N5 0.93 0.91
PAZwicker 0.93 0.91
PAmaxDi 0.93 0.91
PA5More 0.92 0.91
PADi 0.92 0.91
Nmax 0.92 0.90
PAmaxZwicker 0.93 0.90
PNLTM 0.93 0.89
LDFmax 0.92 0.86
LAFmax 0.91 0.87
LDeq 0.86 0.84
PAmaxMore 0.86 0.83
EPNL 0.84 0.83
LAeq 0.84 0.84
PAMore 0.84 0.84
Nstd 0.82 0.82
LZFmax 0.82 0.81
LBFmax 0.83 0.81
LCFmax 0.81 0.80
SELD 0.80 0.81

The superiority of psychoacoustic metrics is further

confirmed by the results shown in the figures below, which
present the coefficient of determination R2 obtained from
fitting the linear (Fig. 2), logarithmic (Fig. 3), logistic
(Fig. 4), and hyperbolic tangent power functions (Fig. 5),
respectively (see Eqs. (3)-(6)). The functions were fitted
to the average annoyance ratings per recording (i.e. us-
ing the responses of the corresponding 20 participants per
case), using the metrics from Table 3 as the variable x in
Eqs. (3)-(6). Overall, the (variations of) metrics derived
from the PA models of Zwicker, Di et al., and More show
the highest R2 values, which means that they explain the
largest amount of variance in the obtained annoyance re-
sponses. More’s PA model performs slightly worse on
the data compared to Zwicker’s and Di’s models, which
is unexpected since this model was created based on air-
craft noise characteristics. Nevertheless, the aircraft con-
sidered when developing this model were relatively old
(mostly Boeing 757, MD-80, and Beechcraft 1900) [14].
The performance of the fits were also evaluated using the
root-mean square error (RMSE) in the prediction [15]. For
conciseness, only the RMSE values for the best perform-
ing cases in Tables 4 and 5 are reported.

Figure 2. R2 values per metric considered for the
linear function fits.

In comparison, many of the more conventional noise
certification metrics show a weaker predictive potential
(although they are still strongly correlated with the an-
noyance ratings, as per Table 3), such as the EPNL and
the Sound Exposure Level (SEL). These results also con-
vey that even relatively simple functions are quite versa-
tile and show a solid potential for relating the perceived
annoyance to a multitude of metrics. An overview of the
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Figure 3. R2 values per metric considered for the
logarithmic function fits.

Figure 4. R2 values per metric considered for the
logistic function fits.

coefficients and the RMSE values of the functions corre-
sponding to the respective best individual fits is provided
in Table Tab. 4. Hence, it seems that when using one sin-
gle metric to fit the annoyance ratings, the logarithmic and
hyperbolic tangent power functions show marginally bet-
ter performance compared to the logistic and linear func-
tions. The best-performing fit obtained (hyperbolic tan-
gent power for PA5Di ) can be visualised in Fig. 6.

The analysis is further expanded to fitting the same
functions to relate sound metrics to the percentage of
highly annoyed people (%HA, typically defined as the

Figure 5. R2 values per metric considered for the
hyperbolic tangent power function fits.

Table 4. Parameters of the functions corresponding
to the best fits, for the average annoyance ratings.

Function R2 RMSE Metric Coefficients
Linear 0.8835 0.468 PNLM a = -15.14

b = 0.26
Logarithmic 0.9116 0.408 PA5Di a = -7.60

b = 9.80
Logistic 0.9007 0.432 PA5Zwicker x0 = 19.84

k = 0.08
Tanh Power 0.9128 0.405 PA5Di k = 0.029

b = 1.07

Table 5. Parameters of the functions corresponding
to the best fits, for the percentage of highly annoyed
people (%HA).

Function R2 RMSE (%) Metric Coefficients
Linear 0.8479 10.329 PAmaxDi a = -45.67

b = 3.08
Logarithmic 0.8654 9.719 PADi a = -224.5

b = 191.06
Logistic 0.8557 10.061 PNLM x0 = 81.18

k = 0.27
Tanh Power 0.8727 9.450 PA5Di k = 0.0599

b = 8.43

percentage of respondents with an annoyance rating larger
than or equal to 7), since this metric is more commonly
used in legislation regarding environmental noise annoy-
ance. As such, in Table 5 the best fits are provided, in
terms of the R2 value and RMSE (in percentage). The
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Figure 6. Best obtained fit with standard errors- hy-
perbolic tangent power function fitted using PA5Di .

findings confirm the fact that the logistic function is well-
suited for this particular purpose (R2 = 0.8557), but they
also emphasize the slightly better performance achievable
via the logarithmic and hyperbolic tangent power func-
tions (over 86% and 87% of the variance is explained, re-
spectively). Interestingly, the hierarchy among these func-
tions remains the same as for the annoyance rating case in
Table 4, although their corresponding best case scenario
metrics slightly differ.

4. CONCLUSIONS & RECOMMENDATIONS

Quantifying aircraft-induced noise annoyance is a cru-
cial challenge that needs to be addressed in order to miti-
gate the consequences of environmental noise pollution on
the affected communities. This task is anything but triv-
ial since the associated mechanisms are highly complex.
Hence, identifying the main predictors of psychoacoustic
annoyance is critical for this purpose.

The results from a listening experiment campaign fea-
turing 60 aircraft flyover recordings showed that psychoa-
coustic metrics and their statistical variations are, in gen-
eral, much better correlated to the reported annoyance rat-
ings than conventional sound metrics. This shows that
metrics that account for the characteristics of the human
auditory system to a deeper level, such as the increased
sensitivity to certain frequency ranges, amplitude modu-
lations, or the presence of tones, are of paramount im-
portance for the task of annoyance quantification. Fur-
thermore, leveraging the non-linear, S-shaped functions of

both the annoyance ratings and the percentage of highly
annoyed people (%HA) is possible by using the logarith-
mic, logistic, and hyperbolic tangent power functions. In
general, more than 90% of the observed variance could be
explained among the annoyance ratings obtained from the
60 aircraft flyover recordings, and up to 87% in the case
of %HA. Once again, almost all of the most promising
fits were obtained using metrics derived from PA models,
showcasing their strong predictive potential.

The main limitation of the study is the lack of a larger
dataset to validate the current results further. Thus, it
is highly recommended for future work to increase the
number of available annoyance ratings corresponding to
a larger dataset of aircraft flyover recordings and partici-
pants and to apply the methodology presented in this paper
to assess its validity.
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