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ABSTRACT

In exterior acoustic simulations using the finite element
method, accurate modelling of an infinite domain using
a finite computational space is challenging due to re-
flections at the truncated boundaries. This study intro-
duces a second-order operator for implementing absorb-
ing boundary conditions with frequency-independent ma-
trices. This new implementation is based on the coupling
of the Helmholtz equation and the absorbing boundary
condition operator equation with a common term. It in-
volves a small expansion of the matrix, which is not costly
compared to the advantage of the frequency-independent
system matrix. In addition, the matrix formulation is well-
suited for moment matching model order reduction due to
the polynomial frequency combination of frequency in-
dependent matrices. This advancement presents a robust
solution for large-scale acoustic problems, reducing com-
putational time and resource requirements.
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1. INTRODUCTION

To model unbounded domain situations, Boundary Ele-
ment Method (BEM) and Finite Element Method (FEM)
are the two main methods in engineering cases. The
BEM [1] reduces dimensionality by discretizing only the
boundary of the domain, making it highly efficient for in-
finite or semi-infinite problems. In contrast, the FEM [2]
discretizes the entire domain, providing greater flexibility
and robustness for problems involving complex geome-
tries, nonlinearities, or heterogeneous materials. For these
reasons, the FEM is often preferred over the BEM in prac-
tical engineering applications. Commercial software that
implement FEM, such as COMSOL, Ansys, and so on,
make the construction of the FEM rather invisible for the
user. But the mathematical development of the method is,
from a general point of view, rather straightforward. In
the development, the boundary conditions of the problem
can be naturally introduced. Having a propagating wave
in an open space, such as an acoustic wave produced by
a car [3], a magnetic field [4], a seismic wave [5], are
very classical situations. In order to avoid unwanted re-
flected waves along an artificial boundary, new assump-
tions must be considered. Among the different assump-
tions to model outgoing waves, perfect matched layers are
also very popular [6]- [7]. They usually suffer from the
expansion of the volume domain, it highly increases the
size of the problem. In this work, the artificial bound-
ary of the model is treated with an Absorbing Boundary
Condition [8]- [9]. ABCs are directly applied along the
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artificial surface, therefore, the problem size remain the
same. In addition, even if there is a lot of great work done
for it [10], PML implementation suffers also from its large
number of parameters that needs to be tuned, and can be
frequency dependent. From an implementation point of
view, ABCs suffer from the presence of normal deriva-
tives that are known for being numerically instable [11].
Moreover, in exterior acoustic situations, very large scale
modeling can be required. For instance, the study of the
noise created by a plane requires to model a large domain
size, and solving the problem for multiple different fre-
quencies can become very expansive, even impossible. To
solve this issue, it is possible to reduce the model by a
Model Order Reduction (MOR) technique. In the case of
frequency sweeps, it is possible to use a Moment Match-
ing method. The term Moment, stands for the knowledge
of the problem around a certain frequency. In this work,
the MOR used is the Well-Condition Asymptotic Wave-
form Equation (WCAWE), a moment matching method
creates a basis vectors from an iterative schema [12]- [13].
To create this basis, the matrix problem known at the in-
terpolation frequency is used, but also the derivatives of
the matrix problem w.r.t frequency, at this exact same fre-
quency.

It is clear that having a system matrix expanded in the
form of a (linear) combination of frequency-independent
matrices has a double impact. Not only are the matrices
assembled once for all, but the computation of deriva-
tives of the system matrix with respect to frequency are
also straightforward. This work proposes a new way
to implement ABCs that leads to frequency-independent
matrices. The system matrix is then only a polynomial
frequency system.Therefore, it is possible to consider a
larger amount of vector in the basis for the projection-
based MOR technique chosen here.

The first section of this work presents the finite el-
ement formulation leading to the resulting frequency-
dependent system involved by the implementation of
ABC. In the same section, the proposed implementation
resulting in a combination of frequency-independent ma-
trices is introduced. The section will then recall the
WCAWE method, and highlights the advantage of having
frequency affine development of the system matrix. Then
the results section presents the exact similarity between
the old and the new implementation before presenting the
results concerning the ROM, and the need to consider a
larger basis to entirely fit the range of frequency. The pa-
per will then be conclude with a discussion section.

Figure 1: Description of the acoustic domain and
boundaries.

2. FROM FULL-ORDER MODEL TO
REDUCED-ORDER MODEL

This section first details the development of the Finite El-
ement Method in order to introduce an Absorbing Bound-
ary Condition, which, in its original implementation, leads
to a frequency-dependent system matrix. It is followed by
the proposed implementation which allows to express the
problem in a polynomial frequency expression. Secondly,
this section recalls the WCAWE moment matching Model
Order Reduction method, which benefits from the imple-
mentation improvements proposed.

2.1 Finite Element formulation

A classical vibro-acoustic generic problem is described in
Fig. 1. The acoustic domain is denoted by Ω, the bound-
aries of the domain are referred to as Γ1 for a vibrating
structure, and Γ2 for a rigid wall where the acoustic wave
is fully reflected. Finally, Γ3 refers to an artificial bound-
ary where the so-called Absorbing Boundary Condition
will be applied.

The governing equation associated with the propaga-
tion of a harmonic wave in a homogeneous fluid domain,
i.e. the Helmholtz equation, is given by

∀M ∈ Ω, ∇2p+ k2p = 0, (1)

where p correspond to the acoustic pressure fluctuation in
Ω and k corresponds to the wavenumber.

The Eq. (1) is called the strong formulation of the
Helmholtz equation, and does not present the boundary
conditions of the problem. To do so, the weak formula-
tion needs to be expressed. The weak formulation of the
Helmholtz equation is

∀v ∈ V,

∫
Ω

∇p·∇vdΩ−k2
∫
Ω

p·vdΩ−
∫
∂Ω

∂p

∂n
·vd∂Ω = 0,

(2)
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where the function v corresponds to the test function, as-
sociated with the function space V . The boundary of
the fluid domain, ∂Ω can be expressed as the reunion
of boundaries such as ∂Ω = Γ1 ∪ Γ2 ∪ Γ3. Along the
first two boundaries, a Neumann boundary condition is
applied, such that {

Γ1 : ∂p
∂n = 1,

Γ2 : ∂p
∂n = 0.

(3)

The third term in Eq. (2) may be developed into three
terms associated with each boundary. The boundary term
associated with Γ2 leads to a null term, the boundary term
associated with Γ1 leads to the so-called external excita-
tion term, or right-hand side term, and the resulting term
from the artificial boundary Γ3, referred to as the ”absorb-
ing term” in the following, is further discussed in the next
two sections.

2.1.1 Absorbing Boundary Condition: Frequency
dependent matrix

The operator considered in this work is the Bayliss-
Gunzburger-Turkel (BGT) operator [14]. In view of a fo-
cussed discussion on the scope of the present contribution,
only the second order of the BGT is developed, but all re-
sults presented stand for the first order, and are currently
being extended to higher orders. The second order BGT
operator [11] is given by

∀M ∈ Γ2,
∂2p(M)

∂r2
+P1(r, k)

∂p(M)

∂r
+P2(r, k)p(M) = 0,

(4)
with r the distance from the point source, and the function
P1(r, k) = 2jk + 4/r, P2(r, k) = 2/r2 − k2 + 4jk/r.
Note here that Pn functions are polynomial expansions of
the wavenumber. In its classical implementation, the ABC
operator may be used to express the radial derivative of the
pressure field, leading to a Neumann boundary condition.
Using Eq. (4) to obtain the normal derivative of p, then
inserting it in Eq. (2), results in

∀v ∈ V,

∫
Ω

∇p · ∇v dΩ− k2
∫
Ω

p · v dΩ

+

∫
Γ3

1

P1(r, k)

∂2p

∂n2
·v+P2(r, k)

P1(r, k)
p·vdΓ3 =

∫
Γ1

1·vdΓ1.

(5)

Following the Galerkin approach, after the discretiza-
tion of the space, and the appropriate selection of the poly-
nomial function space, each of the integral terms in Eq. (5)

may be assembled in a matrix. Each component corre-
sponds to the integral term where the unknowns are ap-
proximated with Ni, a polynomial function of the chosen
nodal basis. The resulting matrix formulation of the prob-
lem has the form[

K + C(k)− k2M
]
P = F, (6)

where P is the vector of nodal unknowns and F the
vector of external excitations. The matrices K and M
are the stiffness and mass matrices, whereas C(k), is
the frequency-dependent matrix associated with absorbing
boundaries, which needs to be computed and reassembled
at each frequency iteration.

2.1.2 Proposed implementation of the operator

The previous section explained how the implementation
of ABC classically leads to frequency dependent matri-
ces. It is well known that assembling such matrices for
each step of a frequency sweep, is memory and CPU con-
suming. This subsection, proposes a strategy to imple-
ment ABC in a way that the matrices are frequency inde-
pendent. Moreover, the matrix formulation of the problem
has another advantage to the use of the moment-matching
method WCAWE where the matrix derivatives w.r.t fre-
quency are needed.

The strategy is rather simple, the only difficulty can
be in the finite element programming process. The strat-
egy is to transform a common term of Eq. (5) and Eq. (4)
in a new variable. After obtaining the weak formulation
of the BGT Eq. (4)), a system of two equations and two
unknowns is then possible to write, such as

Find p ∈ V and q ∈ U such as:

∀v ∈ V,

∫
Ω

∇p · ∇v dΩ− k2
∫
Ω

p · v dΩ−
∫
Γ3

q · v dΓ3

=

∫
Γ1

1 · v dΓ1

∀u ∈ U,

∫
Γ3

∂2p

∂n2
· u dΓ3 +

∫
Γ3

P1q · u dΓ3

+

∫
Γ3

P2p · u dΓ3 = 0

(7)
In this paper, the change of variable is done on the

normal derivative, ∂p
∂n = q. It is now possible to take

advantage of the polynomial development w.r.t frequency
of Pn. The two terms have been previously developed, but
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can be written as

Pn =

n∑
i=0

αi

rn−i
(jk)i, n = 1, 2 (8)

with alphai numerical values. Using this, the two last
integral terms of the second equation in the system Eq. (7),
can be expressed with the sum of frequency independent
integrals with frequency dependent coefficients, e.g∫

Γ3

P1q ·udΓ3 =

∫
Γ3

4

r
q ·udΓ3+ jk

∫
Γ3

2q ·udΓ3. (9)

This development can similarly be done for the other in-
tegral term that concerns p.

Doing so, it is possible to formulate the problem using
only integral terms with spatial terms, multiplied by (jk)i

powers. Nota bene, in the equation system Eq. (7), the
variable p (resp. v) and q (resp. u) do not have the same
number of degrees of freedom (dofs). The variable p is de-
fined in an acoustic volumic domain, whereas the variable
q is defined only on a surface. This results in rectangular
matrices for coupled terms. The development of the in-
tegral terms as inEq. (9), the gathering according to their
(jk)i powers, leads to the following matrix expression[

K −C
G1 +G2 E1

]
+ jk

[
0 0
G3 E2

]
− k2

[
M 0
G4 0

]
(10)

The submatrices assembled with their corresponding inte-
gral terms are listed here

K =

∫
Ω

∇p · ∇v dΩ

M =

∫
Ω

p · v dΩ

C =

∫
Γ3

q · v dΓ3

G1 =

∫
Γ3

∂2p

∂n2 · u dΓ3

G2 =

∫
Γ3

2

r2
p · u dΓ3

G3 =

∫
Γ3

4

r
p · u dΓ3

G4 =

∫
Γ3

p · u dΓ3

E1 =

∫
Γ3

4

r
q · u dΓ3

E2 =

∫
Γ3

2q · u dΓ3

The resulting matrix problem is expended by few de-
grees of freedom. If Ω has nΩ degrees of freedom, Γ3

has nΓ3 , as Γ3 is a subsurface of Ω, the expansion is very
small. Finally, the matrix problem is written such as

[
D1 + jkD2 − k2D3

]
Pq = Fq (11)

The vectors Pq and Fq are respectively the expanded un-
knowns vector and the expanded force vector, and can be
expressed such as

Pq =

[
p
q

]
Fq =

[
1
0

]
(12)

2.2 Model Order Reduction: The new formulation
for WCAWE

Among the MOR techniques, the projection based tech-
niques is based on the built basis V , where the problem is
projected, solved, and projected back with

P = V α (13)

By multiplying the matrix problem (6) by V H , the Her-
mitian transpose of V , the problem is then reduced in a
N ×N problem with N the number of vector in V . And
this reduced problem is much faster to solve for each fre-
quency iteration as N << nΩ. The reduced matrix prob-
lem is

[
Kr + Cr(k)− k2Mr

]
α = Fr (14)

This development is valid for any matrix problem, it has
been detailed with the matrix formulation (6), but it is the
same with (11). The core of projection-based MOR, is the
method used to build V . In this work, the WCAWE is
considered, and the schema to do so is the following
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

Z(0)v̄1 = F (0)

Normalization v̄1 → v1

Z(0)v̄2 = F (1)eT1 PQ1(2, 1)e1 − Z(1)v1

Orthonormalization v̄2 → v2

...

Z(0)v̄k =

k−1∑
j=1

(
F (j)eT1 PQ2(k, j)ek−j

)
− Z(1)vk−1

−
k−1∑
j=2

(
Z(j)vk−jPQ2

(k, j)ek−j

)
Orthonormalization v̄k → vk

...

Z(0)v̄N =

N−1∑
j=1

(
F (j)eT1 PQ2

(N, j)eN−j

)
− Z(1)vN−1

−
N−1∑
j=2

(
Z(j)vN−jPQ2

(N, j)eN−j

)
Orthonormalization v̄N → vN

(15)
For brevity, the terms PQω

will not be detailed here,
but is well explained in [13]. The point of this method, is
to use the derivatives w.r.t frequency of the global matrix
Z, that is the assembled matrix of Eq. (6) or Eq. (11). Here
comes the contribution of having the new implementation
of ABC. It is clear that computing the frequency deriva-
tives of the system matrix of the old implementation (6)
becomes quickly impossible to compute, even with sym-
bolic programming language, because of the quotient of
frequency polynomials functions. On the other hand, the
canonical expansion w.r.t frequency of the global matrix,
helps at constructing V with any number of vectors that is
needed.

3. RESULTS

The studied system is quite simple and can be expanded
to more complex situations. In order to test the presence
of unwanted reflected waves, the system is the classical
baffle system. It consists in a piston clamped in a rigid
wall, vibrating in the air. The air domain is truncated by

an artificial surface where the ABC is applied. In this case,
there is a metric that does not depend on the truncated do-
main geometry : the radiation factor. The radiation factor
will be considered as the ground truth. The Fig. 2 repre-
sents the geometry of the considered case. The flat surface
defined by the normal −y, and −z are symmetries, and
the truncated surface is a cubic one where the edges have
been curved in order to preserve continuity of the normal
around the edges.

(a) Piston side

(b) Artificial boundaries side

Figure 2: Geometry of the cubic rounded truncated
domain.
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Figure 3: Comparison of old and new implementa-
tion of ABC

For the record, the operator in Eq. (4), has been de-
veloped for spherical truncated domain around a scatter-
ing point at the very center of the sphere. The operator
was developed in a way that it is perfectly absorbing for a
perfect sphere, in the present case, it is expected to have
deviation from the ground truth. The authors are working
on warping up the impact on different truncated geome-
tries and the possibility to improve the operator to have a
more general framework to model general structures.

The Fig. 3 shows the radiation factor of the considered
case. As the curves are perfectly overlapping the both im-
plementation provides the exact same results. It is case
dependent, but in sake of comparison, in this case, the
acoustic domain is composed by nΩ = 20924 dofs that
is the size of the old implementation matrix, whereas the
artificial surface add nΓ3

= 3070 dofs.
It is clear that the both implementations lead to the ex-

act same results. The expansion of the matrices involving
a supposed longer computational time is actually compen-
sated by the no-need of computing the C(k) matrix for
each frequency iteration. However this expansion, gave
the idea of using MOR on the system. To present the
results of the MOR, the ground truth is now the FOM.
Fortunately the both FOM are exactly the same. There-
fore, ROM of both implementations can be compared to
the same ground truth curve.

It is expected that the MOR frequency sweep provides
better and better results as the number of vector in V in-
creases. Actually, the new implementation is very alike a
coupled problem, and as it has been highlighted in [15],
the basis V has to be split, such as

Ṽ =

[
Vp 0

0 Vq

]
. (16)

It surely doubles the size of the reduced order model, but
in comparison to the FOM it remains incredibly smaller.
And moreover, there is still the advantage in the new im-
plementation of the non-assembling process for each fre-
quency iteration thanks to the frequency independent ma-
trices. From now, when the results are presented, when
V is said to be composed by N vector, it is for the old
implementation but the size of the projection basis for the
new implementation is Ñ = 2N . In Fig. 4 are presented
the results of the ROM for both implementations with a
number of vector N = 5. In some extent, the results are
similar. The log-error plot shows that the interval of con-
vergence is similar, and the first plot shows that there is
still some improvement that can be achieved by increasing
the number of vectors in the basis. However, the compar-
ison has been done with N = 5 vectors because for the
old implementation, it is the maximum number of deriva-
tives that can be efficiently computed to construct V with
the schema (15). Above the fifth derivative, the compu-
tational time to compute the derivative rapidly increases
and looses the advantage of using MOR technique. Here
comes the need to use the new implementation. Thanks to
it, it is possible to populate the basis V with much more
vectors and having a ROM that perfectly fits the FOM.
An example with N = 20 is presented Fig. 5. Doing a
computational time comparison can be tricky, but just for
an overview, the FOM needs around 2 minutes to be per-
formed whereas the ROM needs less than 3 seconds.
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Figure 4: Comparison of old and new implementa-
tion of ABC

Figure 5: WCAWE technique with high number of
vector to have a fitting ROM
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4. CONCLUSION AND DISCUSSION

A new implementation of frequency independent Absorb-
ing Boundary Condition (ABC) is presented. The mo-
tivation was to have frequency independent matrices in
the problem and the application was a moment-matching
method that requires frequency derivatives of the problem.
By coupling the ABC equation to the Helmholtz equation
and allowing a small expansion of the problem, it is pos-
sible to obtain a frequency independent problem classi-
cally expressed with the frequency affine expansion. It
also allows the possibility to efficiently compute a projec-
tion based reduced model, with a high number of vectors,
to perform fast frequency sweep.

The new implementation can be expand to higher or-
der ABC, so far the authors are facing usual problems,
especially numerical instabilities at low frequencies due
to higher normal derivatives in the formulation. The main
limitation of this work is the coupled system reduce order
model, that implies to split the projection basis, hence,
doubling the size of the ROM. A possible framework on
that would be to use the basis computed with the new im-
plementation, with larger number of vectors, keeping the
vectors concerning the pressure degrees of freedom, and
use it to reduce the problem formulated with the old im-
plementation.
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