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ABSTRACT

Sound scattering is a phenomenon that may deeply affect
the acoustic environment generated by sound sources. Re-
cent studies have shown that the predictions of the multi-
harmonic signal scattered by a deforming body impinged
by a monochromatic sound wave, determined by means of
linear boundary integral formulations expressed in terms
of acoustic pressure governed by the Ffowcs-Williams and
Hawkings equation and velocity potential perturbations,
give different results. This occurs because the nonlinear
field terms neglected in these two formulations make sig-
nificant but different contributions in the case of a mov-
ing boundary. This paper introduces a novel harmonic-
balance, velocity-potential cascade solution approach for
nonlinear sound scattering that takes into account the ef-
fects of the flow-field produced by the dynamic deforma-
tion of the scatterer. The numerical investigation consid-
ers a pulsating sphere as sound scatterer impinged by a
plane wave. It examines the convergence rate of the pro-
posed nonlinear solution algorithm and the effects of the
contributions related to the fluid flow generated by the sur-
face pulsations on the scattered signal. The influence of
the amplitude of the incident signal on the directivity pat-
tern of the scattered sound is also investigated.

Keywords: sound scattering, deforming scatterer,
deformable-boundary integral formulation, boundary el-
ement method.

*Corresponding author: beatrice.derubeis @uniromas3.it.
Copyright: ©2025 Beatrice De Rubeis et al. This is an open-
access article distributed under the terms of the Creative Com-
mons Attribution 3.0 Unported License, which permits unre-
stricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

In the last decades, the aviation industry has experienced
an exponential growth of vehicle configurations that may
potentially be of great interest for the new concepts of air
mobility. These include Urban Air Mobility (UAM) ap-
plications that might represent a solution to city traffic and
pollution. However, unresolved issues like environmental
impact in terms of both chemical and acoustic pollution
must be faced to make the UAM a viable scenario [1].

Regarding the acoustic issue, it is of crucial impor-
tance to include acoustics since the earliest vehicle’s de-
sign phases, so as to minimize the acoustic nuisance.
National and international committees have established
quantitative goals [2] in line with the Flightpath 2050
vision [3]. To achieve these targets, advanced and reli-
able methods and efficient computational tools for acous-
tic prediction must be developed and made available to
researchers and designers.

The aeroacoustics of innovative vehicle configura-
tions may be affected by phenomena that might be neg-
ligible in conventional concepts. For instance, the signif-
icant aerodynamic interactions occurring in distributed-
propulsion systems [4, 5], and the body deformation af-
fecting aerodynamics and aeroacoustics of highly flexible
innovative configurations [6, 7], are among them. At the
same time, the presence of the vehicle’s airframe can sig-
nificantly modify the noise radiated by the propulsive sys-
tem, making the investigation of the installation effects of
primary importance. This effect may be efficiently inves-
tigated by using scattering formulations.

These are based on the assumption that the imping-
ing pressure wave is independent of the presence of the
scatterer surface. This assumption allows the decomposi-
tion of the total pressure field into an incident and a scat-
tered component, which can be solved separately, avoid-
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ing demanding computations where both the source and
the scatterer are solved jointly. Indeed, first, the incident
field is evaluated assuming the source as it was isolated
and “frozen”, with the rest of the vehicle components con-
tributing only as scatterers.

A wide range of literature on this topic is available
which typically assumes the scatterer as a rigid fixed or
moving body (see, for instance, Refs. [8,9]). Formulations
based on the acoustic field described in terms of either the
velocity potential or the acoustic pressure governed by the
Lighthill equation or the Ffowcs Williams and Hawkings
equation (FWHE) have been developed (see, for instance,
Refs. [10-13]).

However, over the past decades also the problem of
sound scattered by deforming surfaces has been inves-
tigated. Considering the deformation of bodies of sim-
ple shape (like cylinders and spheres), Censor proposed
the analytical solution of the scattered sound through a
methodology based on a perturbation scheme applied to
the linear wave equation [14, 15]. He showed that the
nonlinear boundary conditions produce a multi-harmonic
spectrum depending on the motion of the scatterer and the
perturbation order included [14, 15].

A second possible source of multiple tones resides in
the fluid nonlinearities which are strongly related to the
deformation of the scatterer. The effect of fluid nonlin-
earities on the scattered field was studied, for instance,
in Ref. [16] for an infinitely long cylinder impinged by a
plane wave. The relative importance of the two sources
of multi-harmonic scattering was examined by Mujica et
al. [17].

In this context, this paper introduces a novel
harmonic-balance, velocity-potential solution approach
for nonlinear sound scattering that takes into account the
effects of the flow-field produced by the dynamic defor-
mation of arbitrarily shaped scatterers (nonlinearities aris-
ing from both boundary conditions and fluid flow are in-
cluded in the analysis).

Specifically, the scattered noise field is described as
the superposition of incremental velocity potential cor-
rections which include progressively decreasing nonlinear
field effects given by the combination of incident and scat-
tered signal with flow-field generated by the motion of the
scatterer (here called velocity potential cascade solution).
Each incremental velocity potential contribution is deter-
mined through the application of a deformable-boundary
integral formulation for wave equation solution recently
developed by the authors [18].

The velocity potential cascade solution procedure
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is described in Sect. 2, while the harmonic-balance,
frequency-domain numerical solution algorithm based on
a boundary element method for the spatial discretization
is outlined in Sect. 3. The results of a numerical inves-
tigation are discussed in Sect. 4. They regard the sound
scattered by a pulsating sphere impinged by a plane sound
wave. The numerical investigation examines the conver-
gence rate of the proposed nonlinear solution algorithm
and the effects of the fluid flow generated by surface pul-
sations on the scattered signal. The influence of the am-
plitude of the incident signal on the directivity pattern of
the scattered sound is also investigated.

2. NONLINEAR INTEGRAL FORMULATION
FOR SOUND SCATTERED BY DEFORMING
BODIES

Let us consider a body moving in a perfect, inviscid gas,
initially at rest, and express the generated irrotational fluid
velocity field, u, through the velocity potential ¢ such that
u = V. Combining the mass conservation equation with
Bernoulli’s theorem for isentropic flows, the following in-
homogeneous wave equation governing the velocity po-
tential is obtained

162<p_

Vip— 5 —L =
4 ct o2

(D

where ¢ is the speed of sound of the undisturbed fluid and
o is the non-linear forcing term that is given by

o= [(cg — AV + 2V - Vc,b] /c%

L [Ve- V()2 /3 @

where c is the local speed of sound and (*) = 9/0t.

The differential problem is completed by the bound-
ary condition of perturbation potential vanishing infinitely
far from the moving body (¢ — 0 as x — o0) and the im-
position of impermeability of the body surface

Ve-n=v-n=y, xeS 3)
where n is the unit vector normal to the surface S of the
scattering body, and v represents its velocity.

As demonstrated by the methodology presented in
Ref. [18], the solution of Eqn. (1) for the velocity potential

around moving and deforming bodies can be expressed
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through the following boundary integral formulation

1 2 1 2
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where (£1,£2,€3) is a system of curvilinear coordinates
defined over the body surface and the region around it. )
and Vg, denote, respectively, the domains in the (&1, £2)-
space and the (¢£1,¢2,¢3)-space where the body surface
and the neighbouring fluid region are mapped. In addi-
tion, Go = —1/(4nr) with r = |x, — x| denoting the
distance between the emitting point x and the receiving
point x,, M = v/cy, M, = M - n, e, = r/r, while
J = |a; x ag - ag|/(1 — M - e,) is the Jacobian of
the curvilinear coordinate transformation (ay are the co-
variant base vectors related to (£1,£2,¢3)). The symbol
(...)|p indicates that the integrands must be evaluated at
time ¢ = ¢, — 0, which is the instant at which the surface
of the body emitted the signal that at time ¢, reaches the
observer.

2.1 Cascade solution approach of nonlinear velocity
potential scattering

The solution of the complete nonlinear boundary integral
formulation expressed in Eqn. (4) requires the evaluation
of a field term. This is a critical problem in terms of com-
putational cost of the numerical solution algorithm. If an
iterative approach is applied, the contributions from the
usually numerous volume elements must be computed at
each iteration, until convergence. Instead, if a linearized
formulation is introduced and a boundary-field integral
equation is solved, the values of the unknown function
over surface panels and volume elements is determined
directly through inversion of a matrix which, however, is
typically very large (see, for instance, Ref. [10]).

For acoustic problems characterized by the interac-
tion between a travelling sound wave and a moving body,
it is convenient to divide the potential field into an incident
field, ¢!, related to the travelling wave (independent of the
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body), and a component due to the presence of the body,
. The latter can be further considered as the superposi-
tion of the velocity potential perturbation generated by the
motion of the body, g, and the scattered potential, 5.

Previous research has demonstrated that the flow-field
generated by the body motion may significantly affect the
scattered field, and that its effects are taken into account
by including the nonlinear field term in Eqn. (4) [10, 13].

The nonlinear problem is solved through the follow-
ing approach consisting of an incremental convergence of
the scattered potential field. First, the velocity potential
perturbation due to the motion of the scatterer (reference
potential), g, is solved through the boundary integral for-
mulation in Eqn. (4) with

0
XZXOZﬂZV n
on

and the corresponding field term

o = ao(¢o)

Next the scattered velocity potential field induced
by the incident field is decomposed into several sub-
components, namely

% = + 05 + 05 + ...
such that
o > 05 >8> .

In particular, ¢ is obtained as solution of Eqn. (4) with

I
L
on on
and the nonlinear term given by the incremental contribu-
tion due to ¢! as

o= U1(<P07 %01) - Uo(%)

Therefore ¢ represents the component of the scattered
field forced by the incident wave both through the imper-
meability boundary conditions (the dominating term) and
the nonlinear field terms. The contribution of ¢ to o is
omitted so as to have known field terms. However, once
¢ is evaluated, its incremental contribution to o is used
as a known term which produces the second element of the
scattered potential series, @5 . Specifically, @5 is obtained

as solution of Eqn. (4) with

095

= = =0
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(note that the impermeability condition is satisfied by the
combination of ¢y and ¢f) and the nonlinear term as
given by the following incremental contribution

o = o2(0, 0", 7)) — a1(0, ¢")

Therefore @3 represents the first correction to the scat-
tered potential due to the nonlinear contributions of the
scattered potential.

This procedure is repeated until the 7—th incremental
correction of the scattered velocity potential, <ij , obtained
as solution of Eqn. (4) with

0¢?
X=X =, =0
and
o = 0i(po, " 07, 05_q)

Ujfl(SDO» SDI, ‘pfv

’ 90?;2)

becomes negligible. It produces a cascade of incremental
scattered potential fields whose superposition yields the
total scattered field, ©°.

3. VELOCITY POTENTIAL CASCADE BEM
SOLUTION THROUGH HARMONIC BALANCE

For the purpose of the numerical application of the above
boundary integral formulation, the surface of the body is
discretized into N, quadrilateral panels, while M, volume
elements are used to discretize the fluid domain where the
field integral is evaluated. In these surface panels and vol-
ume elements the velocity potential and its space and time
derivatives are assumed to be uniformly distributed, equal
to those evaluated at their centroids (zeroth-order Bound-
ary Element Method, BEM).

When the formulation in Eqn. (4) is applied as a
boundary integral equation with known field contributions
(as for the solutions of the scattered potential cascade),
the satisfaction of the equation is imposed at the center
of each surface discretization panel (collocation method).
This yields the following set of algebraic equations whose
solution provides the piecewise constant values of the ve-
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locity potential over the surfaces of the panels

ZAkZXZ Hk:z)
N,
+ZBkz(Pz ekz + chz(,@z elﬂ) (@)
i=1
+ZFW§( — O) + Z HyonOm (ts — Opm)
=1 m=1

where ¢, and x; denote, respectively, the velocity poten-
tial and the function x evaluated at the center of the i-th
panel, ¢! is the derivative of the velocity potential along
the direction of the local body Mach number component
tangent to the surface, My, y; represents the signal trans-
mission delay 6 related to the observer at the center of the
k-th panel and the emitting source at the center of the i-th
panel, while o, is the nonlinear forcing therm evaluated
at the center of the m-th volume. The influence coeffi-
cients are defined as

:// (1-M>?)GoJ| detdge?
Qi O

B Gy . 10 Lo
Ba=[[ |-+ 5o (G| actae

CM:// [M"GonrGOA]

Q; Co C] 05

/ M, M, Go J
detde?de’

o= Jff ],

where A = J(—e,-n + M,)/co, with J = J/|0],
and €;, Vo, . denoting, respectively, the (¢!, £2)-domain
and the (¢!, &2, ¢3)-domain where the surface of the i-
th panel and the volume of the m-th field element are
mapped. The factor 1/2 which appears at the left-hand
side of Eqn. (4) and Eqn. (5) accounts for the contribu-
tion of the free terms deriving from the singularity of the
kernel function dG(/On arising when the position of the
observer tends to the limit on the emitting surface. Thus,
when k& = i the coefficients By; are intended as Cauchy
principal values of the surface integral [19, 20].

Once the velocity potential over the sphere is known,
it may be readily used to determine the velocity poten-
tial field radiated at external points, through application of

detde?

Fri = d¢'de?

Ori
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the discretized boundary integral representation formally
identical to Eqn. (5), with the factor 1/2 at the left-hand
side removed [19, 20]. This is necessary, for instance, for
the evaluation of the potential field at the centroids of the
discretization volumes for the definition of the field forc-
ing terms in the cascade solution process).

3.1 Multi-harmonic scattering solution algorithm

The integral formulation in Eqn. (4) is expressed in the
time domain. However, acoustic problems are typically
represented in the frequency domain because acoustic
phenomena typically deal with high-frequency signals, for
which time-domain solution algorithms are subject to the
occurrence of numerical instabilities that prevent the eval-
uation of accurate and reliable solutions (see, for instance,
Ref. [21]).

Considering an arbitrarily deforming scatterer in arbi-
trary motion, the above coefficients of the BEM formula-
tion are time-varying. To determine a frequency-domain
expression of the scattered field, let us assume that the in-
cident velocity potential is harmonic and that the influence
coefficients are periodic, with their fundamental harmonic
being a multiple or a sub-multiple of the harmonic of the
incident signal. Note that this assumption is not too limit-
ing or unrealistic. It is applicable, for example, in all those
cases where the deformation of the scatterer is the result
of the response of an elastic structure to incident velocity
potential.

Thus, following the approach introduced in Ref. [21],
it is convenient to express the velocity potential at each
centroid of the discretized BEM domain in terms of its
Fourier series as

N,
=@y + Zcpnccos[nw(t —0)]

n=1
N,

Z Ons sin [nw(t. — 6)]

ot —0)

where w represents the fundamental harmonic, NV, is the
number of harmonics included in the analysis, ¢, and
(ons are the cosine and sine components of the n-th har-
monic of the velocity potential, while (o denotes its aver-
age value.

The combination of this expression of the velocity po-
tential at the centroids of the discretization elements with
Eqn. (5), followed by the determination of the Fourier
series expansion of the coefficients of the resulting set

Milaga, Spain * 23 —

of algebraic equations, and by the balancing of the left-
hand-side and right-hand-side harmonics yields the solu-
tion (see Ref. [21] for details)

= (I-D)'f (6)
where
[ o ] [ £+ ]
Piec f%c + ffc
Sols flxs + flas
p=1 . |, f= .
‘PNac fJ)\</ac + fIt\r/ac
_SoNas_ _fJ>\</as + foas_

with ¢,, . denoting, for instance, the vector collecting the
n-th cosine components of the velocity potentials at the
N, centroids, while £X_ and £ are vectors collecting the
n-th cosine components of the forcing terms deriving, re-
spectively, from the Neumann boundary condition, i.e.,
given by

Z AkzXz ekz)

and from the nonlinear field contributions, i.e., given by

Z Hkmam 9km>

The matrix D is a square matrix of dimensions N, (2N, +
1) x Np(2N, + 1), whose entries are the Fourier com-
ponents of the time-varying coefficients of the set of al-
gebraic equations obtained by combining the Fourier se-
ries expansion of the velocity potential with Eqn. (5) (see
Ref. [21] for details).

In the present problem of sound scattered by deform-
ing bodies, this solution procedure is used to determine
and the incremental scattering components ¢, 5, ... (it
is worth underlying that the results presented in Ref. [21]
correspond to the first scattering component, ¢, under
the assumption of neglecting the effects of the reference
potential, ©q).

Finally, note that it can be applied to an arbitrarily de-
forming body by representing impinging wave and body
motion through suitable discrete Fourier transforms and
determining the solution by combining the corresponding
harmonic components.
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4. NUMERICAL RESULTS

All numerical results presented in the following regard
applications to a pulsating spherical scatterer. They are
obtained through a discretization of the surface that en-
sures converged solutions. Specifically, as a result of a
preliminary investigation of numerical convergence, the
discretization panels used are N, = 600, generated by
dividing the sphere surface through 30 meridians and 20
parallels. The number of harmonics, N,, considered in
the solution algorithm depends on the problem examined.
Converged results are obtained by increasing N, until the
significant harmonics of the output remain unchanged.

We consider a sphere of radius 79 = 1 m subject to
pulsations of amplitude a; = 0.2r¢ and frequency, wq,
such that kqro = 0.3 (with kg = wga/co denoting the de-
formation wave number), impinged by a plane wave, @',
of amplitude A; and wave number k; = k. It is possible
to show that in this case og(pg) ~ 0.

x1073

—Rigid

—-—- Linear 1st harm

—— Nonlinear 1st harm ||
—-—- Linear 2nd harm
—— Nonlinear 2nd harm ||
B " Linear 3rd harm
Nonlinear 3rd harm | |

le¥1/1" |
s

-6 -4 -2 0 2 4 6
%1/l w10

Figure 1. Multi-harmonic directivity patterns of the
scattered signal provided by linear and nonlinear so-
lutions. A; = 1 m?%/s, d/ro = 10.

Figure 1 presents the directivity patterns of the first
three harmonics of the scattered signal evaluated on a set
of microphones located on a circle at a distance d = 107
from the sphere centre, and lying on a plane perpendic-
ular to the plane of the impinging wave. In particular, it
compares the results obtained by the linear formulation
introduced in Ref. [21] (equivalent to the first contribu-
tion to the present cascade solution, (7, when the effects
of g are neglected), with the proposed nonlinear solution
which includes the distortion effects due to the flow gener-
ated by pulsations. In addition, the mono-harmonic solu-

tion for the rigid sphere is depicted. This figure proves that
the fluid flow generated by sphere pulsations may produce
significant distortion to the scattered signal which cannot
be neglected.

%1073

lo®1/1" |
=

-5 -4 -3 -2 -1 0 1 2 3
loS1/]" | x10°7

Figure 2. Directivity patterns of the first harmonic
of the scattered signal cascade components. Ay = 1
m?/s, d/ry = 10.

Next, Figs. 2-4 show the contributions of the different
cascade components to the directivity patterns of the first
three harmonics of the scattered signal. They demonstrate
the rapid decrease of the contributions from the cascade
components with the increase of iterations, and hence the
fast convergence rate of the applied algorithm for the non-
linear solution.

Finally, the role played by the amplitude of the in-
cident sound wave in nonlinear scattering is examined.
In particular, Figs. 5 and 6 present the comparison be-
tween the multi-harmonic directivity patterns provided by
the present nonlinear solution and the linearized one in-
troduced in Ref. [10], respectively for A; = 1 m?2/s and
A7 = 10 m?/s (note that the linearized solution given by
the boundary-field formulation of Ref. [10] can be equiva-
lently obtained by the present approach by including only
linear contributions of ¢! and ¢ in o). These figures
prove that, for the ratio between the scattered field and
the incident sound wave: (i) for low-amplitude incident
sound waves, linearized and nonlinear solutions are fully
equivalent; (ii) the linearized solution is (as expected) in-
dependent of the amplitude of the incident wave; (iii) the
nonlinear solution differs from the linearized one as the
amplitude of the incident wave increases.
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Figure 3. Directivity patterns of the second har-
monic of the scattered signal cascade components.
Ap =1m?s,d/ry = 10.
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Figure 4. Directivity patterns of the third harmonic
of the scattered signal cascade components. A7 = 1
m?/s, d/ro = 10.

5. CONCLUDING REMARKS

A novel harmonic-balance, velocity-potential cascade so-
lution approach for nonlinear sound scattering has been
introduced. It takes into account the effects of the flow-
field produced by the dynamic deformation of the scat-
terer. For a pulsating sphere impinged by a plane sound
wave, the numerical investigation has proven that: (i) the

Al

T
—— Nonlinear 1st harm
« Linearized 1st harm ||
—— Nonlinear 2st harm
« Linearized 2nd harm
Nonlinear 3nd harm ||
Linearized 3rd harm

%1/ 1"
! [

4 | | . |

-6 -4 -2 0
o1/ 1¢| x10°¢

Figure 5. Multi-harmonic directivity patterns of the
scattered signal provided by linearized and nonlinear
solutions. Ay = 1 m?%/s, d/rg = 10.

Rip™
T T

—— Nonlinear Ist harm

« Linearized 1st harm ||
—— Nonlinear 2st harm

« Linearized 2nd harm
Nonlinear 3rd harm
Linearized 3rd harm

/1"
o

il x10°2

Figure 6. Multi-harmonic directivity patterns of the
scattered signal provided by linearized and nonlinear
solutions. A; = 10 m?%/s, d/ry = 10.

proposed harmonic-balance cascade prediction algorithm
is able to provide a rapidly-converged nonlinear scattered
solution; (ii) for large-amplitude, non-small frequency
pulsations of the sphere the nonlinear solution signifi-
cantly differ from the linear one; (iii) for small-amplitude
incident sound waves, linearized and nonlinear solutions
are fully equivalent; (iv) as the amplitude of the incident
wave increases linearized and nonlinear solutions differ,
thus showing that accurate analyses of sound scattered by
deforming bodies require the application of a nonlinear
solution approach like that proposed in the present work.
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