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ABSTRACT

This study investigates an analytical framework to
parametrize transitions of acoustic waves in space-time.
The work considers a linear microphone array and a
point source in a linear, non-dispersive medium be-
tween two parallel, rigid wall surfaces. The pro-
posed framework parametrizes spatiotemporal waveforms
into frequency/phase-speed representations, leveraging
the physical attributes of the boostlet transform. The
parametrization suggests that a superposition of plane
waves boosted along a hyperbola in the Fourier domain
resembles the Green’s function solution in this two-wall
problem. This hyperbola is centered on the frequency
axis, and its apex can be related to the distance between
the walls. In particular, we find a resemblance between the
Gaussian-parametrized waveforms and the Green’s func-
tion solution. The motivation for this work originates from
deriving a framework that easily parametrizes transitions
between free and reverberant spaces, offering versatility
in modeling local and global spatiotemporal wave propa-
gation phenomena.
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1. INTRODUCTION

A long-standing challenge in room acoustics is effectively
modeling the transition between the free-space propaga-
tion of the direct sound and the diffuse, reverberant re-
sponse that emerges after many reflections [1]. Capturing
this transition is non-trivial since the underlying physics
involves fundamentally different processes, such as direct
sound, early reflections, and late reverberation, includ-
ing intricate diffraction and scattering phenomena (due
to objects, boundaries, etc.) that appear in the room im-
pulse response (RIR). Consequently, accurate input data
for boundary conditions, e.g., absorption and scattering
coefficients, and their skillful discretization, steer the per-
formance of numerical simulation methods [2]. This
polychotomy has motivated hybrid modeling strategies,
such as [3, 4]. However, these approaches typically hard-
partition the RIR into early and late components rather
than providing a unified parametric representation of the
continuous transition between the two. A key objective
of current research is thus to devise frameworks that ef-
fectively and efficiently interpolate between free-field and
fully bounded wave propagation in a broadband, physics-
grounded manner.

Efficiently analyzing and processing wavefield
recordings in enclosures is critical in various applications,
such as sound field reconstruction and control, archi-
tectural acoustics, virtual reality, and teleconferencing.
Over time, room acoustics modeling has progressed from
initial geometrical-acoustics methods [5], including ray
tracing [6] and the image-source method [7], to increas-
ingly sophisticated numerical and data-driven techniques.
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Botteldooren applied the finite-difference-time-domain
method to simulate low-frequency room acoustical
phenomena [8]. Berkhout et al. proposed a wavefield
extrapolation approach based on a discretization of
the Rayleigh II integral operator and the plane-wave
reflection coefficient of the rooms’ walls [9]. Discon-
tinuous Galerkin schemes [10] and spectral element
methods [11] have also gained recent popularity. Lastly,
recent data-driven approaches, such as [12–16], attain
impressive results due to their ability to extract the most
relevant features to reconstruct the sound field.

The idea of modeling boundary-value data with lo-
cal solutions in space-time was established with Kaiser’s
foundational works on wavelet acoustics [17] and Gaus-
sian wave packets [18]. Of similar relevance is the
Poincaré wavelet transform by Perel and collabora-
tors [19, 20], which is used to decompose the pressure
boundary values in space-time as a superposition of lo-
calized waveforms, pulsating with a given frequency and
propagating with a given rapidity (i.e., phase speed).
While applicable to describing multi-scale wavefronts in
boundary-value problems, these ideas had not, until the
introduction of boostlet systems [21,22], been explored to
model spatiotemporal waves in room acoustics.

In particular, many waves found in real rooms are
due to complex reflectors, diffraction, or scattering, which
depart from the classical analytical functions used fre-
quently in theoretical, computational, and experimental
models. The motivation for this work is to seek an an-
alytical framework that can model complex wave propa-
gation in space-time and to examine whether this frame-
work can account for modeling the transition between
sound waves traveling in free space and interacting with
the domain boundaries. The proposed framework is
based on the mathematical structures common to Poincaré
wavelets [19] and boostlets [21], which consist of dila-
tions and boosts in 2D space-time.

The paper is structured as follows. Section 2 describes
the Green’s function solutions in free space and the pres-
ence of rigid walls. Section 3 overviews the framework,
built upon Gaussian functions of dilations and boosts and
their analytical inverse Fourier transforms. Section 4 in-
cludes the key findings and results. Concluding remarks
are given in Sec. 5.

2. GREEN’S FUNCTION PRELIMINARIES

Consider the linearized inhomogeneous (3+1)D wave
equation in free space with a point source at coordinates

r⃗0 = (x0, y0, z0) emitting a pulse at t = 0,(
∂2

∂t2
− c2∇2

)
p(t, r⃗) = δ(t, r⃗− r⃗0), (1)

where r⃗ = (x, y, z) ∈ R3 denotes the 3D spatial coordi-
nates, t ∈ R+ denotes the time coordinate, c is the sound
speed, and ∇2 = ∂xx+∂yy +∂zz is the associated Lapla-
cian. It is well-known that the solution p(t, r⃗) is the free-
space Green’s function

G0(t, r⃗) =
δ
(
t− ∥⃗r−r⃗0∥

c

)
4π∥⃗r− r⃗0∥

, (2)

where ∥⃗r− r⃗0∥ =
√
(x− x0)2 + (y − y0)2 + (z − z0)2.

Let us now introduce an acoustically-hard planar sur-
face at z = L/2, that is, a Neumann boundary condition
that vanishes the normal particle velocity at the surface,
i.e.,

∂p(t, r⃗)

∂z
= 0, at r⃗ = (x, y, L/2). (3)

The image-source method can incorporate the above
boundary condition into the wave equation. Then, the
source term becomes the sum of the source, placed at r⃗0,
and its mirrored image, placed at r⃗1 = (x0, y0, z0 + L).
In mathematical terms,(

∂2

∂t2
− c2∇2

)
p(t, r⃗) = δ(t, r⃗− r⃗0)+δ(t, r⃗− r⃗1), (4)

which leads to the following Green’s function

G1(t, r⃗) =
δ
(
t− ∥⃗r−r⃗0∥

c

)
4π∥⃗r− r⃗0∥

+
δ
(
t− ∥⃗r−r⃗1∥

c

)
4π∥⃗r− r⃗1∥

. (5)

Finally, we can add another acoustically rigid wall at
z = −L/2, i.e., the source is exactly between the two
walls. In this case, there are infinitely many reflections,
which are then summed to give the source term. In math-
ematical terms,(

∂2

∂t2
− c2∇2

)
p(t, r⃗) =

∑
n∈Z

δ(t, r⃗− r⃗n), (6)

where the spatial coordinates of the n-th source term are
given by r⃗n = (x0, y0, z0+nL), which yields the Green’s
function

G∞(t, r⃗) =
∑
n∈Z

δ
(
t− ∥⃗r−r⃗n∥

c

)
4π∥⃗r− r⃗n∥

. (7)
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In this paper, we will concentrate on the case of a
source located at r⃗0 = (0, 0, 0) and a line of receivers
located at r⃗ = (x, 0, 0), which reduces the dimensionality
of the Green’s function to 2D space-time:

G∞(t, x, 0, 0) =
∑
n∈Z

δ

(
t−

√
x2+(nL)2

c

)
4π

√
x2 + (nL)2

. (8)

3. ANALYTICAL FRAMEWORK

In the former section, we introduced the basic theory of
Green’s functions in free space and within two infinite
rigid walls. This section will describe the framework
using analytical functions parametrized in terms of dila-
tions and boosts, exploiting the mathematical structure of
Poincaré wavelets [19] and boostlets [21].

3.1 Frequency-phase-speed representations

Let us define a 2D spatiotemporal function g(t, x) ∈
L2(R2) by taking its 2D inverse Fourier transform along
regions intersected by lines crossing through the ori-
gin and hyperbolas in the frequency-wavenumber domain
(ω, kx) ∈ R2. In mathematical terms,

g(t, x) =

∫
R2

|α| g(α, θ) e jα(t cosh θ−x sinh θ) dαdθ, (9)

where g(α, θ) ∈ L2(R2) is a representation of g(t, x) in
the frequency/phase-speed domain, α ∈ R+ is a dila-
tion parameter representing the frequency, and θ ∈ R is
a (Lorentz) boost parameter representing the phase speed
cx = c tanh θ along the x axis [23]. Note the change of
coordinates (ω, kx) 7→ (α cosh θ,−α sinh θ) applied to
the Fourier basis functions.

It is worth commenting on the physical interpreta-
tion of dilations and boosts. Isotropic dilations deform a
wave function g(t, x) by shifting its frequency content. In
short, dilating by α shrinks or expands the wave function
in 2D space-time. Similarly, Lorentz boosts θ perform an
anisotropic (hyperbolic) deformation of the wave function
by increasing or decreasing its phase speed cx ∈ (−c, c)
along the x axis.

3.2 Dilating and boosting Gaussians

In this work, we are interested in parametrizing functions
of the kind g(t, x) into functions g(α, θ) by controlling
the mean and standard deviations of the (α, θ) parame-
ters. Thus, a reasonable approach is to define g(α, θ) as a

Gaussian function. In what follows, we shall assume that
the sound speed is c = 1 m/s.

Consider the Gaussian function

g(α, θ; να,θ) = |α| e
−(α−µα)2/(2σ2

α)√
2πσ2

α

e−(θ−µθ)
2/(2σ2

θ)√
2πσ2

θ

,

(10)
where (µ•, σ•) ∈ R×R+ are the mean and standard devi-
ations of the • = α, θ parameters, and we use the notation
να,θ = (µα, µθ, σα, σθ).

Since g above lives in L2(R2), such a Gaussian is
also a continuous boostlet [21] whose support is mean-
centered at (α, θ) = (µα, µθ) and lives within a standard
deviation cell of size σα×σθ. Consequently, it is possible
to construct a continuous set of functions using a collec-
tion of dilated and boosted Gaussians to decompose and
reconstruct spatiotemporal wavefields.

Finally, consider the space-time, integral representa-
tion of the Gaussian in Eq. (10) via (9)

g(t, x; να,θ) =

∫
R2

|α|e
−(α−µα)2/(2σ2

α)√
2πσ2

α

×e−(θ−µθ)
2/(2σ2

θ)√
2πσ2

θ

×e jα(t cosh θ−x sinh θ) dαdθ.

(11)

An example of such a Gaussian in the Fourier and
(α, θ) domains is depicted in Fig. 1 below.

4. KEY FINDINGS

We are now equipped to consider two special cases of the
integral expression in Eq. (11) by taking limits of the stan-
dard deviations σα and σθ.

4.1 Special case 1: Harmonic plane waves

This case has been identified previously in [21], and fol-
lows when the standard deviations of the dilation and
boost parameters (σα, σθ) both tend to zero, να,θ =
(µα, µθ, 0, 0):

lim
σα→0
σθ→0

g(t, x; να,θ) =

∫
R2

exp (jα [t cosh θ − x sinh θ])

× δ (α− µα, θ − µθ) |α|dαdθ,
(12)

which collapses the Gaussian function into a Dirac delta
mean-centered at (α, θ) = (µα, µθ). In this case, we re-

4147



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

kc

ω

(a)
Magnitude of (g(x, t))

−3 −2 −1 0 1 2 3
Boost θ

58

60

62

64

66

68

Di
la
tio

n 
α

(b)
2D Ga ssian in (α, θ)-space

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.0

0.2

0.4

0.6

0.8

Figure 1. 2D Gaussian function g(t, x; να,θ) with
parameters να,θ =

(
20π, 0, 0, cosh−1(25)

)
≈

(62.83, 0, 0, 3.91). (a) Gaussian in the Fourier do-
main. (b) Gaussian in the dilation-boost domain. The
function depicted in (a) is obtained via Eq. (14). The
mapping between (a) and (b) is dictated by the hy-
perbolic change of coordinates (α(k, ω), θ(k, ω)).

cover

g(t, x; να,θ) = |µα| exp (jµα [t coshµθ − x sinhµθ]) ,
(13)

which behaves like a plane wave with frequency ω = µα

and phase speed cx = tanh(µθ) inside the causality cone.
An example of such a function is plotted in Fig. 2 with

mean dilation (i.e., angular frequency of normal-incident
waves) µα = 6π rad/s, i.e., 3 Hz. The plane wave oscil-
lates around 6 times on the positive (conversely, negative)
time interval considered (here ±1 seconds). This comes
from the fact that the mean boost µθ = 1 rad increases the
number of oscillations hyperbolically, approximately by a

factor of cosh(µθ) ≈ 1.5 in this case. We find the wave-
front distortions on the upper-right (conversely, lower-left)
cone boundary t = x/c peculiar and requiring further in-
vestigation.

4.2 Special case 2: Harmonic spherical waves

Another special case is obtained when the standard de-
viation of the dilation parameter σα → 0, i.e., να,θ =
(µα, 0, 0, σθ). This is equivalent to a hyperbola in Fourier
space whose apex is governed by the mean dilation µα.
An example of such a function is plotted in Fig. 3 with
mean angular frequency (of normal-incident waves) µα =
20π rad/s, i.e., 10 Hz. These oscillations can be observed
in the gradually decaying wavefronts along the positive
(conversely, negative) time axis.

Without loss of generality, let us assume the mean
boost µθ = 0 in what follows and take the limit

lim
σα→0

g(t, x; να,θ) = exp

[
jµα

√
t2 − x2

(
1 +

θ20
2

)]
× exp

[
−1

2

σ2
θ

(
θ0
√
t2 − x2

)2
µ2
α

1− jµασ2
θ

√
t2 − x2

]

× |µα|√
1− jµασ2

θ

√
t2 − x2

,

(14)

where θ0 = arctanh(x/t) is the stationary point of the
phase of the Fourier basis in Eq. (11), obtained as θ for
which

∂

∂θ
[t sinh θ − x cosh θ] = 0. (15)

As depicted in Fig. 3(a) and (d), the real and imagi-
nary parts of limσα→0 g(t, x; να,θ) in Eq. (14) are hy-
perbolic and are supported within the causality cone.
In particular, the imaginary (and likewise real) part of
limσα→0 g(t, x, να,θ) has zeros at (t, x) satisfying

(t2 − x2)

[
1 +

θ20
2

− 1

2

σ4
θ(t

2 − x2)θ20µ
2
α

1 + µ2
ασ

4
θ(t

2 − x2)

]
=

(
nπ

µα

)2

,

(16)
for n ∈ Z. Expanding the standard deviation of the boost
σθ → ∞ gives

lim
σθ→∞

(t2 − x2)

(
1 +

θ20
2

− θ20
2

)2

= t2 − x2 =

(
nπ

µα

)2

,

(17)
for n ∈ Z, equivalent to a set of hyperbolic wavefronts
with apexes (nπ/µα)

2.
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Figure 2. Harmonic, plane wave-like, Gaussian-boostlet function g(x, t; να,θ) computed via Eq. (13), mean-
centered at (µα, µθ) = (6π rad/s, 1 rad), and (theoretically) infinitesimally small boost and dilation standard
deviations, σα, σθ → 0. (a) Real and (d) imaginary parts in space-time. (b) Magnitude and (e) phase in space-
time. Fourier transform (c) magnitude and (f) phase.

4.3 Resemblance to G∞(t, x, 0, 0)

Suppose we set the mean dilation µα = π/L according
to the distance between the two rigid walls L and fix the
source’s excitation frequency to ω = µα. In that case, we
find that this set of points is the same as those supporting
the Green’s function G∞(t, x, 0, 0) in Eq. (7), i.e., when
the receivers are placed at r⃗ = (x, 0, 0), and the source is
placed at r⃗s = (0, 0, 0). Although this does not provide
direct evidence of an approximation of G∞(t, x, 0, 0), it
indicates that its peaks match exactly with the maxima of

lim
σα→0
σθ→∞

g(t, x; να,θ). (18)

Let us analyze the above Gaussian g(t, x; να,θ) at

a fixed location in space. Figure 4 shows the real and
imaginary parts, as well as the magnitude and phase of
g(t, xloc; να,θ) in Fig. 3, i.e., evaluated at x = xloc =
0.5 m plotted against time. The real and imaginary parts
show the ten oscillations corresponding to the mean dila-
tion. The magnitude and phase have an onset at t = xloc.
These onsets can be approximated by a Heaviside function
H(t− xloc/c). The amplitude decay of the onset is over-
laid with the hyperbolic function 1/

√
t2 − x2

loc, which
corresponds to the inverse distance in 2D Minkowski
space. Similarly, the phase after the Heaviside onset is
overlaid with the hyperbolic function µα

√
t2 − x2

loc. Fur-
ther investigation is needed to understand the source term
characteristics that lead to the waveforms g(t, x; να,θ).
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Figure 3. Harmonic, spherical wave-like, Gaussian-boostlet function g(x, t; να,θ) computed via Eq. (14), mean-
centered at (µα, µθ) = (20π rad/s, 0 rad), and with (theoretically) infinite boost standard deviation, σθ → ∞,
and infinitesimally small dilation standard deviation, σα → 0. (a) Real and (d) imaginary parts in space-time.
(b) Magnitude and (e) phase in space-time. Fourier transform (c) magnitude and (f) phase..

5. CONCLUDING REMARKS

The Green’s function solution of a point source between
two parallel rigid walls demonstrates a certain resem-
blance to analytical parametrizations of Guassians with
narrowband frequency content and broadband phase-
speed content. Follow-up research will focus on the two
remaining limits of standard deviations in the Gaussians,
that is, (σα, σθ) → (∞, 0) and (σα, σθ) → (∞,∞).
These cases suggest a correspondence with transient pla-
nar waves—i.e., broadband frequency content and nar-
rowband phase-speed content—and transient spherical
waves—i.e., broadband frequency and phase-speed con-
tent. Transitions between the four wave shapes are sus-
pected to parametrize damping and spherical spreading.
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