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ABSTRACT

Sabine’s absorption coefficient is measured in a rever-
beration rooms under the assumption of a diffuse sound
field. Recently multiple authors presented experimentally
approaches using microphone arrays to quantify sound
field diffuseness within the context of absorption measure-
ments, indeed highlighting the lack of a diffuse sound field
for specific lab environments and frequency bands. This
was found to be especially prominent when the absorbing
test specimen is mounted in the room.

This work presents a combined factor analysis and linear
regression model to investigate the relationship between
the results of the aforementioned diffuseness quantifica-
tion methods and the error in Sabine’s absorption coeffi-
cient. A numerically predicted finite size absorption coef-
ficient serves as ground truth to calculate the relative error
in the absorption coefficient. Finally, the suitability of the
model to correct the measurements of Sabine’s absorption
coefficient is analyzed.

Keywords: reverberation, directional energy decay, mi-
crophone array

1. INTRODUCTION

The measurement of Sabine’s absorption coefficient ac-
cording to ISO354:2003 [1] is performed in a reverbera-
tion room under the assumption of a diffuse sound field.
While the method is widely used since the 1920s, it is well

*Corresponding author: mbe @ akustik.rwth-aachen.de.
Copyright: ©2025 Marco Berzborn et al. This is an open-access
article distributed under the terms of the Creative Commons At-
tribution 3.0 Unported License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the orig-
inal author and source are credited.

2541

known to suffer from a poor reproducibility between lab-
oratories. This has been shown in several inter-laboratory
studies, see for example Refs. [2] and [3]. See Ref. [4]
for a overview of the issues associated with the measure-
ment of Sabine’s absorption coefficient. Recent studies
studies have indeed shown that the sound field in rever-
beration rooms is indeed not perfectly diffuse, or more
precisely not isotropic [5], [6] This was found to be espe-
cially prominent when the absorbing specimen is mounted
in the room.

To statistically investigate the relationship between the
isotropy condition of the sound field in the laboratory and
the error in Sabine’s absorption coefficient which is cal-
culated as per ISO354:2003 [1] a regression model is de-
veloped in this work. The input and output data-sets, as
well as the regression model are derived in Section 2. The
experimental setup consisting of three different laboratory
conditions is described in Section 3. Section 4 and Sec-
tion 5 present the implementation of the regression model
and the results, respectively, followed by a conclusion in
Section 6.

2. MODEL
2.1 Target Variables

As target variables for the regression model developed in
this section, the relative error in Sabine’s absorption co-
efficients are used. These are computed for the 15, T30,
and Ty regression intervals

=~ J€{20,30,40}, (1)
where & is a reference finite-size random-incidence ab-
sorption coefficient estimated using a combined finite el-
ement and boundary element method simulation simi-

lar to Ref. [7]. Material parameters were inferred from
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Figure 1: Isotropy evolution (- - -) as function of the
decay level as well as the histogram (mm) of the indi-
cated 8 dB intervals and their respective mean ().

impedance tube measurements using the method pre-
sented in Ref. [8]. Here, the relative error is chosen as
it is independent from the absolute magnitude of the ab-
sorption coefficient.

2.2 Input Variables

The input data for the model is derived from the temporal
evolution of estimators for sound field isotropy and ax-
ial symmetry. These estimators are calculated according
to Berzborn et al. [9]. The isotropy estimator is based
on Ref. [5] and the axial symmetry estimator is inspired
by the work of Jammalamadaka and Terdik [10]. Both
quantifiers are linearly interpolated to a common scale
proportional to the decay level of the respective omnidi-
rectional Energy Decay Curve (EDC). This normalization
also aligns the evolution of the quantifiers with the rever-
beration time evaluation ranges. In addition to the estima-
tor magnitude, their rate of change is of interest as well.
This information is captured in the first derivative of the
quantifiers with respect to the energy level.

The quantifiers are averaged over decay level intervals
of 8 dB. The interval is chosen small enough such that the
distributions of the data within the interval is uni-modal
and is well represented by its mean. In agreement with
1SO354:2003 [1], the initial 5 dB of the decay process are
excluded from the analysis. The lowest energy level used
is —45 dB due to the limited dynamic range of the Direc-
tional Energy Decay Curve (DEDC) measurements. An
example of the process for the isotropy evolution is given
in Fig. 1. Derivatives are typically sufficiently represented
by averaging over the entire decay process.

This results in 12 input variables for each frequency
band and room configuration. In the following, a matrix
' € R'2%9 js constructed by stacking the vectors ~ for
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all rooms and frequency bands. To ensure equal weighting
of the symmetry quantifiers and their derivatives, the data
are normalized to zero mean and unit variance Yong and
Pearce [11].

2.3 Factor Analysis Regression

Since the symmetry quantifiers are derived from the same
underlying data, they are expected to be correlated. The
correlation is expected to be even stronger for cases where
consecutive segmentation intervals show similar mean
values, as is the case for configurations and frequency
bands with uniform damping distribution. In order to
identify a set of underlying latent variables and at the same
time reduce the dimensionality of the input data vector a
factor analysis is performed. The factor analysis is de-
signed to explain the matrix of observations by a linear
combination of the latent variables. In matrix notation,
the factor analysis model can be written as [11]

I'=¥Z+N, 2)

where ¥ € R!?2*Z is the factor loading matrix, Z €
RZ*O is the matrix of latent variables, and N € R12%0 ig
an additive residual error matrix. The factor loading ma-
trix is estimated iteratively from the correlation matrix of
the input data using orthogonal quartimax rotations.
Assuming a linear relationship between the latent
variables and the absorption coefficient error, a multiple
linear regression model is used, which is expressed as

e=pZ+n., 3)

where € € is the matrix containing the stacked vec-
tors of absorption coefficient errors calculated for the three
reverberation time intervals, 3 € RZ is the vector of re-
gression coefficients

ﬂ:[ﬂOaﬂla"'aﬂzp—a (4)

where f3 is the intercept and n. € R represents the ad-
ditive modeling error. The matrix 7 is obtained by adding
a column of ones to the matrix of latent variables Z to
account for the intercept term.

RSXO

2.4 Absorption Coefficient Prediction

Once the factor loading matrix and the regression coef-
ficients are identified, the model can re-arranged to pre-
dict a corrected version of Sabine’s absorption coefficient
based on the symmetry quantifiers. Replacing the refer-
ence absorption coefficient & in Eq. (1) with the predicted
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absorption coefficient &, the corrected absorption coeffi-
cient can be computed as

a; =a;(1+¢;) j€{20,30,40}. Q)
Substituting Eq. (3) into Eq. (5) results in
d:d®<1+,62>7 6)

where & € R3*C and @ € R3¥© are the matrices
containing the corrected and measured absorption coef-
ficients, respectively, and ® denotes the Hadamard prod-
uct.

3. EXPERIMENTAL SETUP

The spherical and axial symmetry quantifiers were com-
puted from experimental data captured in three different
laboratory conditions: A rectangular reverberation room
with volume 245 m? in a configuration including 22 panel
diffusers and a second configuration without any diffuser
treatment — referred to as room no. 1 —and a second rever-
beration room with volume 215 m? equipped with a com-
bination of 12 panel and 85 boundary diffusers — referred
to as room no. 2. The same glass-wool test specimen with
10.8 m? was used in all laboratory conditions.

A Universal Robots URS scanning robotic arm was
used to sequentially sample a dual-radius spherical micro-
phone array. The sequential microphone array consists of
a total of 310 sampling positions including interior points
to stabilize the eigenfrequencies of the sphere. Their po-
sitions were calculated using the algorithm proposed by
Chardon et al. [12]. Three different receiver positions
were used in room no. 1, while only two receiver posi-
tions were used in room no. 2. For each condition, a single
source position was used. The procedure to calculate the
symmetry quantifiers is outlined in Ref. [9].

The reverberation time used to estimate the respective
absorption coefficients was calculated from the omnidi-
rectional EDC at the center position of the microphone ar-
ray. Instead of using an additional measurement, the om-
nidirectional EDC was computed as the Schroeder [13]
integral of the monopole moment of the omnidirectional
response of the microphone array.

Note that while the setup is as similar to the procedure
described in ISO354:2003 [1] as possible, it does not fully
comply with the standard in the following aspects:

* The number of source and receiver positions per
laboratory condition is far lower than the minimum
number of 12 required by the standard.
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* No frame was used to cover the specimen’s sides,
which is accounted for in the numerically calcu-
lated reference absorption coefficient.

4. MODEL IMPLEMENTATION

The factor analysis and multiple linear regression model
were implemented based on the scikit-learn library, [14].
In order to later validate the model, a split of the data into
a training and test set was performed, where the training
set consisted of 75 % of the full dataset. The suitability
of the input data for factor analysis was assessed using the
Bartlett [15] test of sphericity and the Kaiser-Meyer-Olkin
measure of sampling adequacy [11]. The number of latent
variables used in the factor analysis was determined using
a scree plot, and consecutively confirmed using a paral-
lel analysis as suggested by Horn [16]. Estimation of the
loading matrix was performed iteratively using the maxi-
mum likelihood approach. The linear regression based on
the latent variables was performed using a standard least
squares approach. A significance test of the regression co-
efficients was performed using an Analysis of Variances
(ANOVA) on the regression models for the three rever-
beration time intervals. Additional significance tests of
the individual regression coefficients were performed us-
ing r-tests.

5. RESULTS

The results presented in this chapter are based on the sym-
metry estimator input data derived for the occupied rooms.
If not otherwise stated the presented results are based on
the training data set.

5.1 Factor Analysis

The factor analysis indicated that the input data can be
represented by three latent variables. Most prominently,
the first latent variable represents the quantitative value
of the isotropy and axial symmetry estimators, with high
loadings for all respective intervals. Similarly, the second
latent variable primarily represents the rate of change of
the symmetry quantifiers. Interestingly, increased loading
is also observed for the input variables representing the
quantity of both estimators towards the late part of the de-
cay process. This is most likely due to the fact that this
part of the decay process shows the largest rate of change
in the symmetry quantifiers in the case of non-uniform
damping, see for example. Fig. 1. Such cross-loading of
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input-variables on multiple latent factors indicates non-
ideal separation of the latent variables. Nonetheless, the
second latent variable may still be interpreted as the rate
of change of the symmetry quantifiers.

In comparison, the third latent variable shows overall
lower and slightly inconsistent loadings for all variables,
and as a result is not clearly interpretable. As the next sec-
tion will show, the third latent variable does not contribute
significantly to the developed model.

5.2 Multiple Linear Regression

The ANOVA results indicate that the regression model
is significant at a level p < 0.001 for all reverberation
time intervals, with F'-statistics of 44.9, 80.7, and 88.4,
see Table 1. The individual #-tests of the regression
coefficients indicate that all except (33 are statistically
significant with p < 0.001. For (3, that is the third latent
variable, the T'-statistic is subject to low values while
the p-values are between 0.12 and 0.41, indicating that
the third latent variable does not significantly contribute
to the model. As mentioned before, the third latent
variable is consequently excluded from the model for the
remaining analysis.

As a goodness of fit measure, the coefficient of
determination R? was computed. For the training data
set the coefficient of determination is found to increase
with increasing dynamic range used for calculation of the
reverberation time, showing values from 0.75 to 0.86,
see Table 1. For the test data the R? and mean squared
error are found to be slightly lower than for the training
data, with R? values of 0.68 to 0.80, see Table 1. While
the test data shows slightly lower accuracy, the results
still indicate sufficient generalization capabilities of the
model.

Figure 2 shows the regression lines for the individual
latent variables separately, as well as the 95 % confidence
interval, and the individually calculated R? measure.
Each row corresponds to one of the reverberation time
intervals. The increase of the reverberation time interval
seemingly improves the accuracy of the model. In fact,
Fig. 2 reveals that the increase in the goodness of fit is
primarily due to the improved goodness of fit for the
second latent variable. Interestingly, the R? measure
obtained for the first latent variable is found to be similar
for €99, €39, and €49 with values between 0.64 to 0.68,
while the R? measure for the second latent variable in-
creases from 0.09 to 0.22. This may indicate two things:
Firstly, the magnitude of the symmetry estimators is
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Table 1: Results of the F-test, as well as the coeffi-
cient of determination R? for the multiple linear re-
gression model. The F-test statistics are given for the
training data only.

R2
F-statistic ~ p-value Training Test
€20 44.9 < 0.001 0.75 0.68
€30 80.7 < 0.001 0.85 0.81
€40 88.4 < 0.001 0.86 0.80

more indicative for the error in the absorption coefficient
than their respective rate of change for the given model.
Secondly, the rate of change in the symmetry quantifiers
reflects the increase in the reverberation time estimation
error — and hence increase in the absorption coefficient
error — for larger evaluation intervals in the presence of
multi-exponential energy decay. Note that the R? for the
second latent variable is still low for all reverberation time
intervals. This is also due to a number of distinct outliers.
For the second latent variable outliers for 5 > 0 and
€ < —0.3 are observed which result in an increased
regression error for all reverberation time intervals,
cf. Fig. 2. Similarly, outliers are observed for the first
latent variable for ¢ < —0.3 and ¥; < 1, cf. Fig. 2.
While the outliers are not clearly interpretable, it is
highly likely that they are due to insufficient separation
of the input variables, which was already hinted at in the
interpretation of the factor analysis.

5.3 Absorption Coefficient Prediction

Figure 3 shows the corrected absorption coefficient (us-
ing Eq. (6)) without distinguishing between training and
test data, as well as the measured absorption coeffi-
cient.Further, Fig. 3 shows the numerically computed fi-
nite size absorption coefficient. The depicted data for each
frequency band corresponds to the average over three all
laboratory rooms and receiver positions. The results indi-
cate that the mean of the corrected absorption coefficient
is in good agreement with the reference absorption coef-
ficient for the 15y, T30, and T}y intervals. Further, the
[2.5 %, 97.5 %)] percentiles of the corrected absorption co-
efficient are smaller compared to the respective percentiles
of the measured data. Interestingly, the agreement seems
best for the 75 interval, and decreases with increasing
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Figure 2: Regression lines for the two predicted relative absorption coefficient error based on the two latent
variables. Shaded areas indicate the 95 % confidence interval.
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Figure 3: Mean of the corrected and measured absorption coefficient data averaged over all laboratory rooms.
Shaded areas indicate the region spanning the 2.5 % and 97.5 % percentiles. The combined test and training
data are used. The reference refers to the numerically computed absorption coefficient.
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reverberation time evaluation interval which seems coun-
terintuitive as the interval showed the lowest R? in the
previous section.

An additional room by room analysis revealed that the
high variance of the corrected absorption coefficient is pri-
marily influenced by the room configuration without panel
diffusers installed for most frequency bands.Similarly, the
variance in the measured absorption coefficient is primar-
ily influenced by the room configuration without panel
diffusers installed.This observation is in agreement with
the results of the previous section, which showed that the
outliers in the regression model are primarily associated
with the room configuration without panel diffusers in-
stalled.

6. CONCLUSION

This paper presented a stochastic model for the analysis
between the uniformity of incident energy distributions
— l.e. isotropy and axial symmetry — and the error in
Sabine’s absorption coefficient. The results indicate a sta-
tistically significant relationship. While the results of the
regression model are promising, the analysis of the rela-
tionship between the latent variables and the absorption
coefficient error revealed mismatches between the target
data and the model. A number of distinct outliers were
observed, which are most likely due to insufficient sep-
aration of the latent variables in the factor analysis. Fu-
ture work should involve the development of an improv-
ing the identification of the latent variables. Especially
a model-based parameterization of the symmetry quanti-
fiers, is expected to improve the performance of the re-
gression model. Nevertheless, initial results indicate that
the model can be used to correct Sabine’s absorption coef-
ficient if data from multiple laboratory rooms are available
to train the model.
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