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ABSTRACT

The concept of an acoustic center finds use in microphone
calibration, evaluations of anechoic chambers, and mod-
eling sound source directivity. Although precise defini-
tions and interpretations vary between works, at low fre-
quencies and for omnidirectional radiators, the acoustic
center may be defined as the ratio of the dipole to the
monopole moment of the source. This formulation pro-
vides a straightforward approach to represent the radia-
tion from an extended source by a single monopole that
preserves the amplitude and phase characteristics of the
original source in the far field. However, not all sources
are omnidirectional at low frequencies, including open-
back guitar amplifiers, ported loudspeakers, cymbals, and
gongs. This work extends the theory of the low-frequency
acoustic center to such sources using the framework of
multipole expansions. Spherical harmonic expansions of
the pressure field measured using a spherical microphone
array allow extraction of the multipole moments and the
consequent acoustic center from measured data. Theoret-
ical models, such as an axially vibrating cap on a sphere
and an oscillating sphere, demonstrate the ability of the
technique to model extended sources as a superposition of
a monopole and dipole field.
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1. INTRODUCTION

The concept of an acoustic center is relevant in appli-
cations varying from microphone calibration [1–3], ane-
choic chamber evaluation [4], and sound source model-
ing [5, 6]. However, the diverse definitions and concep-
tual postulations of the acoustic center’s precise meaning
across these applications has resulted in a similarly wide
range of proposed algorithms. Jacobsen et al. [7] demon-
strated that even for simple theoretical sources, the appar-
ent location of the acoustic center depends on the specific
definition employed, particularly at intermediate and high
frequencies. This key finding underscores that the funda-
mental, yet often elusive, challenge is to determine how
the acoustic center should be properly defined. Ideally,
a robust definition of the acoustic center will lead to its
consistent identification, regardless of the algorithmic ap-
proach used.

As thoroughly shown by Jacobsen et al. [7], the cur-
rently standardized definitions of the acoustic center [8,9]
fail to meet this criterion. Nonetheless, these standard-
ized definitions do yield consistent results for sources
which are omnidirectional radiators at low frequencies
[10, 11]. At this low-frequency acoustic center, the ex-
tended, real source may be replaced by an single equiv-
alent point source whose amplitude corresponds to the
source’s monopole moment. Reference [12] showed that
approaches based on 1/r decays, phase shifts, or maxi-
mizing the energy in low order terms of a spherical har-
monic expansion also converge to this same acoustic cen-
ter location for both theoretical and real sources. Con-
sequently, the concept of a low-frequency acoustic cen-
ter qualifies as a robust definition because the same solu-
tion is obtained independent of the employed identifica-
tion method.
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Nonetheless, not all sources behave as monopoles at
large wavelengths. These include sources with strong
dipole moments such as ported loudspeakers and open-
back guitar amplifiers [13, 14], cymbals and gongs [15],
or even some stringed instruments with sound holes such
as the violin [16]. Additionally, the concept of a low-
frequency acoustic center cannot be applied to interme-
diate and high-frequency radiation with more complex ra-
diation patterns. Determining a consistent definition of
the acoustic center for all sources and for all frequencies
requires further generalizations. This work explores the
extension of the low-frequency acoustic center to dipole
radiators. The approach adopts Vanderkooy’s [10] princi-
ple of defining the low-frequency acoustic center through
the multipole expansion of an extended source. How-
ever, rather than only considering a monopole radiator, the
method retains both the monopole and dipole fields.

2. THEORY

2.1 Low-Frequency Dipole Acoustic Center

At low frequencies, or when the acoustic wavelength is
much greater than the physical dimensions of the source,
a multipole expansion of the Kirchhoff-Helmholtz Inte-
gral Equation leads to a simplified model of sound radi-
ation [17]. This model forms by replacing the extended
source with monopole, dipole, quadrupole, and higher-
order radiators located at a single expansion point. The
amplitude of these multipole components, or moments,
depends on the choice of expansion point. A poor choice
of expansion point can lead to a slowly converging series
and large multipole moments [10]. In contrast, an optimal
expansion point leads to a rapidly converging series with
smaller multipole moments.

The low-frequency acoustic center for an omnidirec-
tional source follows by choosing the expansion point to
completely eliminate the dipole moment [10, 11]. How-
ever, not all sound sources behave omnidirectionally at
low frequencies. Consider a source whose far-field pres-
sure may be approximated by both a monopole and dipole
field located at the acoustic center rc:

p(r) = MG(r, rc) +

3∑
µ=1

Dµ(rc)Fµ(r, rc). (1)

In this equation,

M = iz0k

∫∫
S

un(rs)dS (2)

is the monopole moment, with k being the wavenumber,
z0 = ρ0c the characteristic specific acoustic impedance,
and un the normal particle velocity on the source’s surface
S. The function

G(r, r0) =
e−ikR

4πR
, (3)

with R = |R|, R = r − r0, is the free space Green’s
function, and

Dµ(r0) =

∫∫
S

iz0kun(rs)(xsµ−x0µ)+p(rs)n̂µdS (4)

is the dipole moment in each of the three Cartesian co-
ordinates (x1, x2, x3) = (x, y, z) with n̂µ representing
the associated component of the surface unit normal vec-
tor [17]. Unlike the monopole moment, the dipole mo-
ment depends upon the choice of expansion origin r0.
Lastly,

Fµ(r, r0) = ikG(r, r0)

(
1− i

kR

)
R̂µ (5)

is the dipole field in each direction [17].
If the coordinate system origin ro = 0 does not align

with the acoustic center, then the multipole expansion will
include higher order terms to ensure proper convergence.
The quadrupole moments are defined as [17]

Qµν(r0) =

∫∫
S

iz0k

2
un(rs)(xsµ − x0µ)(xsν − x0ν)

(6)

+ p(rs)n̂µ(xsν − x0ν)dS.

This equation allows for an expression for the three lon-
gitudinal (µ = ν) quadrupole moments for any expansion
origin r0 in terms of the quadrpole, dipole, and monopole
moments expanded about the origin as

Qµµ(r0) = Q(2)
µµ(0)− x′′

µDµ(0) +
1

2
x′′
µ
2
M. (7)

In a similar fashion to the definition of the low-frequency
acoustic center of an omnidirectional source, assume that
expanding the pressure about the acoustic center causes
the longitudinal quadrupole moments to vanish:

Qµµ(rc) = 0, µ = 1, 2, 3. (8)

Then the dipole acoustic center follows by solving the
quadratic equation of Eq. (7) as

xcµ =
Dµ(0)±

√
Dµ(0)2 − 2MQµµ(0)

M
. (9)
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The choice of sign will be determined from physical con-
siderations. The average of the two roots is

1

2
(x−

cµ + x+
cµ) =

Dµ(0)

M
= r(o)c , (10)

which is the equation of the acoustic center of an omnidi-
rectional source [11].

One disadvantage of Eq. (9) is that for a purely dipo-
lar source (M = 0), the equation for the acoustic center
becomes singular. An alternative solution to the quadratic
equation which overcomes this limitation is

xµc =
2Qµµ(0)

Dµ(0)±
√
Dµ(0)2 − 2MQµµ(0)

. (11)

For a purely dipolar source, the acoustic center becomes

xµc =
Qµµ(0)

Dµ(0)
, M = 0, (12)

which is identical in form to the low-frequency acoustic
center of an omnidirectional source.

2.2 Relation to Spherical Harmonic Expansion
Coefficients

Calculating the acoustic center follows in a straightfor-
ward fashion from Eqs. (9) or (11). While in practice the
multipole moments are generally unknown, they can be
estimated from measured data using spherical harmonic
expansion coefficients [11, 18, 19].

The relationship for the monopole and dipole mo-
ments are given in [11]. For the quadrupole moments,
assume that the normal component of the particle velocity
is known on a spherical surface of radius a. Then the nor-
mal particle velocity may be expanded in terms of spheri-
cal harmonics as

un(θ, ϕ) =

∞∑
n=0

n∑
m=−n

Um
n Y m

n (θ, ϕ), (13)

where Y m
n are the normalized spherical harmonics and

Um
n are the expansion coefficients. From Euler’s equa-

tion, the surface pressure becomes [11]

p(a, θ, ϕ) = −iz0

∞∑
n=0

n∑
m=−n

Um
n

h
(2)
n (ka)

h
(2)′
n (ka)

Y m
n (θ, ϕ).

(14)
Substituting the expressions for the surface pressure
and normal particle velocity into the definition of

the quadrupole moment (Eq. (6)), applying the small-
argument relations of the spherical Hankel functions [11]

h
(2)
n (ka)

h
(2)′
n (ka)

≈ − ka

(n+ 1)
, ka << 1, (15)

and simplifying yields

Qµµ = iz0ka
4

∞∑
n=0

n∑
m=−n

Um
n

(
n+ 3

2n+ 2

)

×
∫ 2π

0

∫ π

0

x̂2
µY

m
n (θ, ϕ) sin θdθdϕ, ka << 1, (16)

where xµ = ax̂µ. The Wigner 3j symbols may be used to
evaluate the integral as follows. First, let (xµ)

m
n represent

the spherical harmonic expansion coefficients of the unit
vectors x̂, ŷ, and ẑ, which are given in [11]. Then define

Nm
n (x̂µ) =

∫ 2π

0

∫ π

0

x̂2
µY

m
n (θ, ϕ) sin θdθdϕ (17)

=

∞∑
p=0

q∑
p=−q

∞∑
s=0

s∑
t=−s

(xµ)
q
p(xµ)

t
s

×
∫ 2π

0

∫ π

0

Y q
p (θ, ϕ)Y

t
s (θ, ϕ)Y

m
n (θ, ϕ) sin θdθdϕ.

The integral over the sphere of the product of three spher-
ical harmonics may be simplified as

Nm
n (x̂µ) =

∞∑
p=0

q∑
p=−q

∞∑
s=0

s∑
t=−s

(xµ)
q
p(xµ)

t
s

×
√

(2n+ 1)(2p+ 1)(2s+ 1)

4π

(
n p s
0 0 0

)(
n p s
m q t

)
(18)

where the final two terms, which appear as 2×3 matrices,
are the Wigner 3j symbols [20]. Evaluating these sums
yields the coefficients for the expansions coefficients as

Qxx = iz0ka
4

(
√
πU0

0 − 1

9

√
5πU0

2 +
1

2

√
5π

6
(U−2

2 + U2
2 )

)

Qyy = iz0ka
4

(
√
πU0

0 − 1

9

√
5πU0

2 − 1

2

√
5π

6
(U−2

2 + U2
2 )

)

Qzz = iz0ka
4

(√
πU0

0 +
2

9

√
5πU0

2

)
. (19)
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For axisymmetric radiators, the equations simplify further
to

M = iz0ka
24πV0

Dz(0) = iz0ka
32πV1

Qzz(0) = iz0ka
42π(V0 +

2

9
V2), (20)

where Vn are the Legendre polynomial expansion coeffi-
cients of the surface normal velocity [11, 21]. The dipole
acoustic center then becomes

rc = a
2(V0 +

2
9V2)

V1 ±
√
V 2
1 − 4V0(V0 +

2
9V2)

. (21)

3. RESULTS

3.1 Axially Vibrating Cap on a Rigid Sphere

A first instructive model is an axially vibrating cap on a
rigid sphere. Its normal surface velocity is defined as [21]

un(θ, ϕ) =

{
u0 cos θ, θ ≤ θ0

0, θ > θ0
, (22)

where u0 is the amplitude and θ0 is the cap half-angle.
This theoretical model has two important limiting cases.
First, as θ0 → 0, the source’s sound field approaches the
far-field omnidirectional radiation of a point source on a
sphere. Second, as θ0 → π, the source approximates
a transversely oscillating sphere with far-field dipole ra-
diation [17]. Consequently, this source can vary from
purely monopole to purely dipole radiation depending on
the chosen cap half-angle.

However, the shift from far-field omnidirectional to
dipole radiation occurs over a relatively narrow range of
cap values. Figure 1 demonstrates this transition by plot-
ting the numerically evaluated Directivity Index (DI) [21]
over θ0 for ka << 1. The shift from a DI of 0 dB (omni-
directional radiation) to ≈ 4.77 dB (dipole radiation) oc-
curs between 170◦ to 180◦ because the dipole moment
becomes relatively stronger only when the net surface ve-
locity (volume velocity) tends to zero due to the exact
cancellation of the in and out-of-phase components of the
sphere’s vibration.

The source’s directivity balloons reflect the trends
seen in the DI plot. Figure 2 plots the far-field direc-
tivity for ka = 0.001 for select cap half-angles. Even
for a cap half-angle of 177◦ (Fig. 2(a)), the radiation

Figure 1. Directivity Index of an axially vibrating
cap on a rigid sphere. For values of 0◦ ≤ θ0 ≤ 150◦,
the DI is 0 dB (omnidirectional).

is quasi-omnidirectional. However, for a cap angle of
178◦ (Fig. 2(b)), a null begins to form in the xy-plane.
As the monopole moment continues to vanish, the radia-
tion appears more dipole-like until at 180◦ a perfect null
forms in the xy-plane (Fig. 2(d)). Radiation patterns sim-
ilar to those in Fig. 2(b)-(d) appear in measured results
of ported loudspeakers, open back guitar amplifiers, and
gongs [13–15], underscoring the utility of this theoretical
model to predict dipole-like radiators.

The low-frequency acoustic center of this source fol-
lows from its spherical harmonic expansion coefficients.
The expansion coefficients of the surface velocity are [11]

Um
n = Vn

4π[Y m
n (θ0, ϕ0)]

∗

2n+ 1
, (23)

where (θ0, ϕ0) is the direction of the cap and Vn are
the expansion coefficients for the axisymmetric case
[(θ0, ϕ0) = (0, 0)]. The axisymmetric coefficients are
given for 0 ≤ n ≤ 2 as [21]

Vn =
u0

2


1

2
(1− cos2 θ0), n = 0

1− cos3 θ0, n = 1
2

3
− 5

21
P2(θ0)−

3

7
P4(θ0), n = 2,

(24)

where Pn are the Legendre polynomials. Substitut-
ing these values into the axisymmetric relationships of
Eq. (21) yields the dipole acoustic center.

It is informative to consider the two limiting cases of
θ0 → 0◦ and θ0 → 180◦ before studying the full results.
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Figure 2. Far-field directivity pattern for an axially
vibrating cap on a rigid sphere with cap half-angle
(a) θ0 = 177◦, (b) θ0 = 178◦, (c) θ0 = 179◦, and (d)
θ0 = 180◦. The cap is oriented to the positive z-axis.

The former condition, representative of a point source on
a rigid sphere, has an acoustic center located at 1.5a [11].
The latter case, representative of a transversely oscillating
sphere, must, by arguments of symmetry, have an acous-
tic center at the origin. Consequently, the physical solu-
tion must properly interpolate between these two limiting
cases.

Curves representing the low-frequency acoustic cen-
ter of an axially vibrating cap appear in Fig. 3. First, the
solid red curve marked r

(o)
c indicates the omnidirectional

low-frequency acoustic center given in [11]. For cap half-
angles of 0◦ ≤ θ0 ≤ 90◦, this definition is unambiguous
because the surface velocity is all in-phase and positive.
However, cap half-angles beyond 90◦ can accrue a sig-
nificant dipole moment that weakens the underlying as-
sumption of purely omnidirectional far-field radiation and
makes the application of the definition more dubious. In
fact, as θ0 → 180◦, the curve representing r

(o)
c goes to

infinity because the monopole moment goes to zero.
As the dipole moment strengthens with increasing cap

Figure 3. Acoustic center of an axially vibrating cap
on a rigid sphere.

half-angle, incorporating both a monopole and dipole term
to represent far-field radiation becomes necessary. The
dashed blue curve and the dotted black curve represent the
real parts of the negative and positive roots of the dipole
acoustic center, respectively. The curves agree with the
result expressed in Eq. (10) that the sum of the two roots
must equal r(o)c . When considering the limiting condi-
tion that the acoustic center should approach the origin as
θ0 → 180◦, only the positive root r+c leads to a physically
meaningful value for this source.

From approximately 45◦ to 110◦, the three solutions
r
(o)
c , r−c and r+c exactly agree. In this range, the terms

inside the square root become negative so that the real part
is simply r

(o)
c , as apparent from Eq. (9). For smaller cap

half-angles, the dipole equation does provide real-valued
solutions; however, because the far-field radiation at these
angles is omnidirectional, incorporating dipole terms in
the expansion is less meaningful.

Although a radially vibrating cap in a rigid sphere
has well-defined radiation characteristics, determining its
acoustic center is not straightforward. The bifurcations
appearing in the graph indicate that physical intuition and
knowledge of radiation trends must guide the choice of a
proper center. For this source, the solid yellow highlight
marks the acoustic center assuming that a single monopole
is the appropriate model up until around 105◦, after which
a monopole and dipole model becomes necessary.

The choice of source model does lead to different
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characteristics in the radiated field after centering. Figure
4(a) plots the pressure field around the sphere for a cap
angle of 126◦, (compare Ref. [11], Fig. (6)). Although
the far-field radiation is omnidirectional, the out-of-phase
components of the surface velocity lead to cardiod-like
patterns in the near-field. Figure 4(b) and (c) show the
pressure field produced by a monopole at the omnidirec-
tional acoustic center r(o)c and a monopole and a dipole at
the dipole acoustic center r+c , respectively.

Although both models show agreement with the
source’s far-field radiation, incorporating the dipole term
leads to better near-field agreement. A surprising result is
that the optimal location for a first-order and second-order
expansion is different. Thus, simply defining the acous-
tic center as a location that minimizes a specific multipole
moment may not be a robust approach, since an idealized
source model should allow the inclusion or exclusion of
higher-order terms without altering the expansion origin.

3.2 Two Point Sources on a Sphere

A second interesting theoretical case is two point sources
on opposing sides of a rigid sphere with a varying ampli-
tudes Qs and γQs, where γ is a real number and repre-
sents the ratio of source strengths. As discussed in Sec.
IV E of [11], this source becomes a dipole radiator when
γ = −1, leading to a nonphysical omnidirectional low-
frequency acoustic center position.

Assuming an axisymmetric configuration with the
first point source with amplitude Qs at r = aẑ and the
second point source of amplitude γQs at r = −aẑ, the
spherical harmonic expansion coefficients of the source
are given as [11]

U0
n =

Qs

a2

√
2n+ 1

4π
[1 + γ(−1)n]. (25)

Figure 5 plots solutions to the acoustic center for this
source, including the low-frequency monopole acoustic
center r(o)c and the two roots of the low-frequency dipole
acoustic center r±c .

Similar to the case of an axially vibrating cap, con-
sidering the limiting cases is important to interpreting the
results. In the regime γ ≥ 0, the two point sources
have positive amplitudes, are in-phase, and have no strong
dipole moment. When the second point source is turned
off (γ = 0) the acoustic center coincides with that of the
isolated first point source at rc = 1.5a. As γ → ∞
so that the amplitude of the second point source is much

Figure 4. Sound pressure field produced by (a) and
axially vibrating cap on a sphere with θ0 = 126◦, (b)
a single monopole located at r(o)c , and (c) a monopole
and dipole located at r+c .
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Figure 5. Acoustic center for two point sources at
the opposing poles of a sphere.

greater than that of the first, the acoustic center asymptot-
ically approaches that of the isolated second point source
at rc = −1.5a. Lastly, when γ = 1 so that the point
source amplitudes are equal, by arguments of symmetry
the acoustic center should fall at the origin. Both r

(o)
c and

the real parts of r±c concur with these conditions.
However, when γ < 0, two other important limiting

cases must occur. When γ = −1, the monopole moment
is zero and the the far-field radiation is purely dipolar. By
arguments of symmetry, the acoustic center must fall at
the origin. Lastly, as γ → −∞, the acoustic center must
again asymptotically converge to that of the isolated sec-
ond point source at rc = −1.5a. Because only the dipole
center r+c satisfies these conditions, r+c is the physical so-
lution for γ < 0.

4. DISCUSSION

The absence of a consistent definition for the acoustic cen-
ter hinders the development of reliable identification algo-
rithms. A coherent definition only emerges at large wave-
lengths and for sources exhibiting omnidirectional radia-
tion. As noted by Jacobsen et al. [7], generalizing the con-
cept of an acoustic center to sources with directional radi-
ation is a significant challenge. Although this work ex-
tended the low-frequency acoustic center to sources with
dipole components in their far-field radiation, the results
illustrate several remaining obstacles and ambiguities.

For example, while the omnidirectional low-
frequency acoustic center yields a single linear equation
with a unique solution, incorporating second-order dipole
terms leads to quadratic equations with two distinct roots
for each Cartesian direction. Including higher-order terms
will result in higher-order algebraic equations, requiring
the isolation of a single physically meaningful solution.
While theoretical models allow for the observation of key
limiting behaviors to identify the correct solution, such
information is often absent for real, measured sources,
posing significant practical challenges for higher-order
sources.

Another ambiguity arises from the influence of the
source model on the acoustic center. The example of an
axially vibrating cap on a sphere, as illustrated in Fig. 4,
suggests that even for the same source, the acoustic cen-
ter’s location varies depending on whether dipole terms
are included. Ideally, the expansion point should be in-
dependent of the source model, allowing for the flexi-
ble incorporation of higher-order terms. Furthermore, the
criteria for choosing between a monopole model and a
monopole-dipole model remain unclear. While one might
assume that far-field radiation characteristics will always
determine this choice, the results in Fig. 4, corresponding
to omnidirectional radiation (DI ≈ 0 dB), showed better
near-field agreement with the dipole model. This find-
ing implies that the optimal definition and model for the
acoustic center may be application-dependent, requiring
consideration of specific needs such as near-field accuracy
versus far-field source behavior.

5. CONCLUSIONS

This work explored the extension of the low-frequency
acoustic center to dipole radiators through a multipole
expansion of the Kirchhoff-Helmholtz Integral Equation.
The resultant theory overcame previous limitations for
source configurations with dipole radiation characteris-
tics, including producing a physical location of the acous-
tic center and improved near-field agreement. Future work
includes applying the method to more theoretical models
and measured results as well as validating the technique
with previously proposed algorithms.
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