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ABSTRACT

Simulation of outdoor noise propagation is often performed
using geometry-based methods. However, these meth-
ods typically lack the ability to accurately capture wave
phenomena, such as diffraction, leading to limitations in
the low-frequency range. This study investigates the ap-
plication of the Discontinuous Galerkin (DG) method, a
wave-based computational approach, for simulating acous-
tic wave propagation in the time domain within a large
outdoor environment. The used implementation of the DG
method supports high-order basis functions in space and
uses a matrix-free approach for high computational effi-
ciency suitable for computations on high-performance clus-
ters. Preliminary results from DG simulations conducted
in a geometrically complex outdoor setting are presented,
demonstrating the potential of this method for accurate
noise propagation analysis at low frequencies.

Keywords: Discontinuous Galerkin Method, Outdoor
noise propagation, Acoustic simulation

1. INTRODUCTION

Outdoor noise propagation simulations often rely on geometry-

based acoustic simulation methods, which are standardised
in Europe in CNOSSOS-EU [1]. However, geometry-based
simulation methods for outdoor sound propagation sim-
ulations have shortcomings in the low-frequency range
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[2, S. 118]. This is especially obvious when comparing
geometry-based methods with wave-based methods, such
as the Finite Element Method (FEM) [3]. Computational
demands regarding memory (RAM) and processor (CPU)
limit the applicability of FEM to outdoor noise propagation
simulations. This contribution addresses some limitations
of FEM and geometry-based methods by using the Discon-
tinuous Galerkin (DG) method.

The DG method is the latest advance in acoustics sim-
ulations, particularly room acoustics [4-6]. Consequently,
its applicability to outdoor noise problems seems promis-
ing. An implementation of the acoustic conservation equa-
tions in a high-order DG framework is provided in [7, 8].
Therein, the system of equations is implemented into the
software framework ExaDG [9], which itself relies on the
deal.Il-framwork [10]. The implementation uses a matrix-
free approach [11], meaning that little to no RAM is re-
quired for the computations because the operator equations
are computed on the fly. In contrast, with a conventional
matrix-based approach, the matrices must be assembled
before solving the system of equations as a whole.

This contribution investigates the applicability of the
DG method to a 3D outdoor noise propagation scenario.
A realistic outdoor noise propagation scenario is achieved
by extruding the 2D geometry of our former study [3] for
D = 300 m to form a simple three-dimensional geometry,
as shown in Fig. 1. The applicability of the DG method
in the current implementation status is documented as a
feasibility study.

This paper is organised as follows. In Sec. 2, the DG
method is introduced and its application to a large-scale
outdoor noise problem is discussed. In Sec. 3, prelimi-
nary results are presented, highlighting the applicability of
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Figure 1. Two-dimensional cross-section through an
alpine valley presented in [3, Fig. 2]. The railroad is
considered the noise source. The 2D cross-section
is extruded with an extrusion depth of D = 300 m to
form a 3D geometry.

the DG method. Section 4 provides a conclusion and an
outlook to potential future developments.

2. DISCONTINUOUS GALERKIN METHOD FOR
OUTDOOR NOISE PROPAGATION

The acoustic conservation equations are a set of two cou-
pled first-order partial differential equations with the acous-
tic pressure p, and acoustic particle velocity i, as solu-
tion quantities. In their strong form, conservation of mass
and conservation of momentum are respectively defined
as [7, Eq. (2.10)]
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where c is the speed of sound in air, pg is the ambient
density of air, and f is an arbitrary source term. The air is
assumed to be homogeneous and at rest.

2.1 Discontinuous Galerkin Formulation

To obtain the DG formulation of the acoustic conservation
equations, Eq. (1) is multiplied with a scalar test function
qn, and Eq. (2) is multiplied with a vectorial test func-
tion wy,. Furthermore, the equations are integrated over
the volume of one element €2, and integration by parts is
applied on both equations. Furthermore, a second integra-
tion by parts is performed on the conservation of momen-
tum equations such that a skew-symmetric formulation is
achieved [12]. Introducing the jump terms py, , for acoustic
pressure and 4, ;, for acoustic particle velocity, the weak
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DG formulation yields

0
(q}u pmh) - (V(]ha pOCQ’L_I:a,h)Qe
Qe
+(Qhﬁ, poczﬂ;,h)agez (qh, sz) Q.

ot
. L1
W, +{ Why, —Vpan
Q. Po Q
(n 7L (0% —pa)
£o

Therein, the compact notation for volume and surface
integrals is used, such that (a,b)o, = [, a-bdQ and

(a,b0)00, = [5q a-bdAOQ, where OS2 denotes the bound-
ary of the volume €2. Furthermore, the jump operators for
an arbitrary quantity a are denoted as

{a )} = % (a= +at),
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where the superscript T denotes the solution in the adjacent
element, and ~ denotes the solution in the current element.
Therewith, the jump terms p}, ;, and 4 ;, can be defined.
Lax-Friedrichs fluxes are often used as jump terms, e.g.,
[5,7], providing the advantage that they only depend on
known material parameters of air, such that

p:,h = {{Pa,h} - T[[pa,h]] )

ﬁz,h = {ﬁa,h}} - PYHﬁa,h]] )

6)

where T = poc/2 and v = 1/(2pgc).
2.1.1 Boundary Conditions

A sound-hard boundary condition is applied to the ground
(bottom surface) to have a simple test case, and first-order
absorbing boundary conditions are applied to all other
surfaces. This is achieved using the admittance boundary
condition from [7, Sec. 3.2].

2.1.2 Time Stepping

The purely explicit time-stepping algorithm used in this
work consists of an Adams-Bashforth predictor and an
Adams-Moulton corrector, as defined in [7, Sec. 3.4.1]. The
time step size At is based on the Courant-Friedrichs-Lewy
(CFL) condition, such that

Cry h
At=—=L2L @
pls ¢
where the CFL number is chosen to be Cry = 0.25, p is
the polynomial order, and h is the size of the smallest cell.

This results in a time step size of At =~ 2.5 ps.
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2.2 Spatial Discretisation

The discretization is based on the maximum element size
hmax after an optional refinement. Following the inequal-
ity of Ainsworth [13] with the modification by Heinz [7,
Eq. (3.22)], an upper frequency limit fy,.x is established
based on the spatial order p. In Fig. 2, the upper frequency
limit depending on the element size h,.x is depicted for
different spatial orders p. Based on these considerations, a

C=2
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Figure 2. Maximum frequency fiax for which the
spatial discretization fulfils the Ainsworth inequality
with C' = 2 following [7, Sec. 3.8.1].

spatial discretization with the element size hy,x = 20m
is chosen together with one refinement and the spatial
order p = 8. This yields an effective element size of
10 m and thus an upper frequency limit of approximately
fmax = 80Hz. Furthermore, threefold refinement is ap-
plied in the region around the source to resolve the omni-
directional source term properly. The mesh has 297 752
eighth-order hexahedral elements. Each element has 2916
degrees of freedom per cell, hence the system of equa-
tions has 868 244 832 degrees of freedom. Figure 3 shows
the mesh used for the computations. The outer dimen-
sions of the geometry are approximately 2700 m in length
(z-direction), 600 m in height (y-direction), and 300 m in
depth (z-direction).

3. PRELIMINARY RESULTS

The excitation signal can be chosen arbitrarily. For first
evaluations, a spatially static sinusoidal excitation signal
with a frequency of fex. = 40 Hz is used. The results have
been computed on the Vienna Scientific Cluster (VSC)
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Figure 3. Spatial discretization of the computational
domain.

! using 512 CPU threads with a wall time of 18h (ap-
proximately 348 000 time steps following Eq. (7)). Fig-
ure 4 illustrates the field plot of the sound pressure level
L, = 10logy, (p?/p3) dB, po = 20 pPa, at t = 0.87s.

4. DISCUSSION AND CONCLUSION

The results show that using the DG method for outdoor
noise computations in large three-dimensional geometries
allows for the computation of physically accurate results.
This is enabled by the matrix-free implementation of the
DG approach [11], allowing for parallelised computations
on high-performance computing clusters. While the DG
method is computationally more demanding than geometry-
based methods, it still serves as a valuable tool for achiev-
ing precise wave-based predictions in the low-frequency
range.

The algorithm is planned to be developed further to
improve its applicability to outdoor noise problems. Re-
garding the source term, parametrised synthetic moving
traffic noise can be incorporated such that the excitation
signal is, e.g., road, railway, or aircraft noise with arbitrary
trajectories. Furthermore, the efficiency of the algorithm
can be improved by implementing a local time stepping
(LTS) scheme, such as in [14], in the source region. The
smallest element sizes occur in the source region, raising
the need for a very small global time step according to
Eq. (7) in the current implementation. A LTS algorithm
would help to reduce the computational cost because the
small time step is only necessary in regions with small ele-
ments. Finally, reflections of the tangential component of
the acoustic pressure at the absorbing boundary condition
are currently present. These may be tackled by employ-
ing a perfectly matched layer as a non-reflecting boundary
condition.

''VSC5 with AMD EPYC 7713 (Milan) CPUs, deal.Il version
9.7.0, gcc version 8.5.0 and the latest ExaDG version.
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Figure 4. Field plot of the sound pressure level L, att = 0.87s.
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