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ABSTRACT

Vibro-acoustic coupling between structural and acoustic
domains via the Finite Element Method can be tackled
using different reduction techniques. This study com-
pares three coupling approaches within the displacement-
pressure formulation: standard modal coupling, modal
coupling with static corrections, and Craig-Bampton
vibro-acoustic coupling. A symmetrization procedure is
introduced for all methods, facilitating the computation of
coupled vibro-acoustic modes. Through a representative
example, the methods are evaluated in terms of perfor-
mance and computational efficiency, benchmarked against
the physical, non-reduced coupling approach.

Keywords: simulation, FEM, substructuring, vibro-
acoustics

1. INTRODUCTION

The Finite Element Method (FEM) has become a cor-
nerstone in the study of vibro-acoustic problems, provid-
ing a flexible framework for modeling both structural and
acoustic domains. A widely adopted approach involves
representing the structure and the acoustic cavity through
their respective uncoupled modal bases and subsequently
coupling them in the modal domain. While this method
offers computational advantages and conceptual simplic-
ity, it often fails to capture the interaction accurately.
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To address these limitations, pseudo-static corrections
were introduced by Tournour [1] to account for the pres-
ence of the acoustic domain in computing the uncoupled
structural modes and vice-versa, in terms of an added
mass. An alternative strategy, proposed by Herrmann [2],
involves computing internal modes for both the structural
and acoustic domains while preserving the fluid-structure
interface in its physical representation. This method is
conceptually similar to the Craig-Bampton approach [3],
traditionally used in dynamic substructuring, and enforces
a more accurate treatment of the interface interactions.

Building upon these developments, the present work
proposes a hybrid formulation wherein the structural do-
main is represented by its uncoupled in-vacuo modes,
while the acoustic cavity is modeled using a Craig-
Bampton-type reduction. In this formulation, the inter-
nal modes of the cavity are computed, and the degrees of
freedom at the acoustic fluid-structure interface are kept
in their physical form. This choice is motivated by the
observation that the structural behavior remains relatively
invariant whether it is in-vacuo or coupled with the cavity,
whereas the acoustic field is significantly affected by the
boundary conditions imposed at the interface.

Furthermore, a new formulation is introduced to
transform the vibro-acoustic problem into a symmetric
system representation. This reformulation improves the
numerical manageability and stability of the problem, par-
ticularly when computing coupled vibro-acoustic modes.
It also opens the door for more efficient eigensolvers and
a clearer physical interpretation of the coupled system be-
havior. The proposed methods aim to strike a balance be-
tween model accuracy and computational efficiency, of-
fering an improved framework for vibro-acoustic analysis.
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2. VIBRO-ACOUSTIC COUPLING METHODS

Coupling structural and acoustic models using the Finite
Element Method is essential for simulating interactions
between structures and their surrounding acoustic envi-
ronments. This can be achieved through various methods,
each balancing computational efficiency and accuracy. In
this section different vibro-acoustic methods will be pre-
sented, as depicted in Figure 1.

Physical Coupling (PC)

Modal Coupling (MC)

Modal Coupling with Static 
Corrections (MC + SC)

Modal Coupling with Craig-
Bampton in acoustic domain 

(MC+CB)

Craig-Bampton (CB)

s f

s f s f

s fs f

Figure 1. Comparison of different vibro-acoustic
coupling methods using FEM. Structure and cavity
are depicted as s and f respectively. The new pro-
posed method is highlighted.

2.1 Physical coupling (PC)

The most simple way of connecting acoustic and struc-
tural domains using FEM is through physical coupling.
It uses structural displacements and acoustic pressures to
represent the interaction. A surface coupling matrix en-
sures exchange of forces across the interface. While ac-
curate, this method can be computationally intensive for
large systems due to the high dimensionality of the matri-
ces.

The structural-acoustic coupling in time domain, in a
Finite Element representation can be expressed in Equa-
tion (1) , using a displacement-pressure formulation [4]:[

Ms 0
CT

sf Mf

] [
ü
p̈

]
+

[
Ks −Csf

0 Kf

] [
u
p

]
=

[
fs
ff

]
(1)

With Ms, Mf , Ks, and Kf the structural and acoustic
mass and stiffness matrices, Csf the surface coupling ma-
trix, fs, ff the structural and acoustic external loads and
u, p the nodal displacement and pressure vectors of the
structural and acoustic domains. The matrices Mf and
Kf need to be divided by the density of the acoustic do-
main, so the acoustic equation is in volumetric basis. The

surface coupling matrix can be obtained from the finite
element discretization as:

Csf = BT
s NfAfBf (2)

with Bs and Bf matrices that select the DOF of the struc-
tural and acoustic domains at the fluid-structural inter-
faces, Nf a matrix containing the normal vectors pointing
towards the structure of the corresponding acoustic nodes,
and Af a diagonal matrix containing the area of the corre-
sponding acoustic nodes.

2.2 Modal coupling (MC)

Modal coupling analyzes the structure and acoustic cav-
ity separately to extract their uncoupled modes. Structural
modes are calculated in vacuo, and cavity modes assume
rigid walls. The displacements and pressures can be ap-
proximated by a set of truncated modes:

u ≃ Φsum

p ≃ Φfpm
(3)

with Φs,Φf the truncated modal sets and um, pm the
modal participation factors of the structural and acoustic
domains respectively. Take the Equation (1) that expresses
the fluid-structure interaction in physical coupling. If both
structural and acoustic domains are represented by their
first modes, given by Equation (3), multiplication on the
first line by ΦT

s and the second line by ΦT
f , the system in

physical domain can be expressed by the modal participa-
tion factors um, pm:[

Is 0
CT

sf,m If

] [
üm

p̈m

]
+

[
Ω2

s −Csf,m

0 Ω2
f

] [
um

pm

]
=

[
ΦT

s fs
ΦT

f ff

] (4)

The coupling between structural and acoustic subdomains
approximate the physical coupling if the number of modes
of each domain is sufficient. However, since it involves
the independent computation of modes, the equilibrium
condition between structural and acoustic domains, given
by the fluid-structure interaction, is poorly satisfied.

2.3 Modal coupling with pseudo-static corrections
(MC+SC)

An improvement can be done in the modal coupling by
adding pseudo-static corrections [1]. These corrections
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use residual flexibilities at the interfaces, so the approxi-
mation of u and p in Equation (3) is enhanced by a static
term:

u ≃ Φsum +Gr,s(fs + Csfp)

p ≃ Φfpm +Gr,f (ff − CT
sf ü)

(5)

with Gr,s and Gr,f the residual flexibility matrices of the
structural and acoustic domains, that can be obtained as:

Gr,s = K−1
s − ΦsΩ

−2
s ΦT

s

Gr,f = K−1
f − ΦfΩ

−2
f ΦT

f

(6)

If K is singular, because there are not enough boundary
conditions to prevent its rigid body motion, then K−1 is
obtained by a procedure that constrains K to be invertible
and suppresses the rigid body modes [4].

Inserting the transformation (5) in the coupled equa-
tion of motion in physical domain (1). the resultant system
of equations is [4]:[

Is +Ms,am 0
CT

sf,m If +Mf,am

] [
üm

p̈m

]
+

[
Ω2

s −Csf,m

0 Ω2
f

] [
um

pm

]
=

[
ΦT

s fs +ΦT
s CsfGr,fff

ΦT
f ff − ΦT

f CsfGr,sf̈s

]
(7)

where Ms,am and Mf,am are the added masses in the
structural and acoustic domains respectively due to the
vibro-acoustic interaction.

Ms,am = ΦT
s CsfGr,fC

T
sfΦs

Mf,am = ΦT
f C

T
sfGr,sCsfΦf

(8)

This method improves the natural frequencies of the
vibro-acoustic coupled system [1]. However, the local be-
havior at the fluid-structure interface is is not ensured.

2.4 Craig-Bampton coupling (CB)

A different way to tackle the vibro-acoustic coupling is by
using a Craig-Bampton [3] reduction. In [2] this type of
coupling is applied. It reduces the complexity of the cou-
pling by using internal and constraint modes for the struc-
tural and acoustic domains, reducing the size of the phys-
ical matrices while preserving fluid-structure interfaces in
physical domain.

Consider a transformation of the physical DOF such
that internal and interface DOF are explicitly separated:

u = Ls

[
ui

ub

]
, p = Lf

[
pi
pb

]
(9)

with the subindices i and b indicating internal and bound-
ary interface, respectively. The localization matrices Ls

and Lf are defined as:

Ls =
[
BT

ii,s BT
bb,s

]
, Lf =

[
BT

ii,f BT
bb,f

]
(10)

where Bii,s and Bii,f select the internal DOF and Bbb,s

and Bbb,f select interface DOF from structural and acous-
tic domains, respectively. The Craig-Bampton transfor-
mation [5] in structural and acoustic domains can be
achieved using a truncated set of internal modes Φi and
a full set of constraint Ψib modes:[

ui

ub

]
≃

[
Φi,s Ψib,s

0 Ib

] [
um,i

ub

]
= TCB,suCB ,[

pi
pb

]
≃

[
Φi,f Ψib,f

0 Ib

] [
pm,i

pb

]
= TCB,fpCB

(11)

with pm,i and um,i the modal participation factors of the
acoustic and structural internal domains. The constraint
modes are defined as:

Ψib,s = −K−1
ii,sKib,s,

Ψib,f = −K−1
ii,fKib,f

(12)

where Kii,s,Kii,f are the stiffness matrices associated to
the internal degrees-of-freedom, and Kib,s,Kib,f are the
stiffness matrices connected to internal-interface terms,
for structural and acoustic domains respectively. The
Craig-Bampton transformations (11) can be applied re-
spectively to each side of the vibro-acoustic equation of
motion (1), resulting in the following equation.[

MCB,s 0
CT

sf,CB MCB,f

] [
üCB

p̈CB

]
+

[
KCB,s −Csf,CB

0 KCB,f

] [
uCB

pCB

]
=

[
fCB,s

fCB,f

] (13)

This methodology involves a higher number of DOF, since
the interfaces of both structural and acoustic domains are
retained in physical domain. However, it attempts to im-
prove the vibro-acoustic coupling.

3. NOVEL METHODS

3.1 Hybrid modal-Craig-Bampton vibro-acoustic
method (MC+CB)

The equation of motion of the vibro-acoustic system after
application of a Craig-Bampton reduction (13) may con-
tain many DOF at the structural-acoustic interface. In or-

5319



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

der to reduce the number of interface DOF, one could as-
sume that only the acoustic domain is subject to an impor-
tant modification of the pressure field at the fluid-structure
interface when interacting with a structural domain. In
this assumption, the structural modes are solved in vacuo
while the acoustic domain keeps the interface representa-
tion in physical domain.

This reduction can be performed as a hybrid modal-
Craig-Bampton transformation. Modal on the structural
side, and Craig-Bampton on the acoustic side. The com-
bined transformations can be summarized as:

u ≃ Φsum

p ≃ LfTCB,fpCB

(14)

Inserting this transformation in equation (1), the resultant
equation of motion of the vibro-acoustic assembly is:[

Is 0
CT

sf,m,CB MCB,f

] [
üm

p̈CB

]
+

[
Ω2

s −Csf,m,CB

0 KCB,f

] [
um

pCB

]
=

[
fm,s

fCB,f

] (15)

The number of DOF of the assembled system is reduced
in the number of interface displacements ub respect to the
Craig-Bampton coupling (see section 2.4). At the same
time, in situations when a structural domain is fully em-
bedded in an acoustic subdomain, meaning that all struc-
tural DOF are connected to acoustic DOF, this method
prevents the suppression of all internal structural DOF.

0,14 m
t = 1,5 mm

Plate

Cavity

Figure 2. Cavity-plate example.

3.2 Symmetrization of vibro-acoustic systems

A new symmetrization method is proposed in this sec-
tion, that intends to be general for all the presented vibro-

acoustic coupling methods. When applying the vibro-
acoustic interaction, the exhibited modes of the system
may differ from the individual uncoupled structural and
acoustic modes. For that reason, it is convenient to obtain
the coupled vibro-acoustic modes for a better understand-
ing of the global behavior.

In the previous sections, different reductions were
performed over the structural and acoustic domains sep-
arately, so the vibro-acoustic equations of motion were
obtained (1), (4), (7), (13) and (15). All of them are non-
symmetric, which makes it more difficult to solve for the
eigenvalues and eigenvectors of the system.

A method for turning the Equation of motion (4) sym-
metric was introduced in [6]. The full method is summa-
rized in the book [4]. However, this method involves the
inversion of the eigenvalue matrix of the acoustic domain,
which may be singular due to acoustic static modes. The
new symmetrization method avoids this inversion.

Consider the equation of motion in physical domain
(1). This equation can be rendered symmetric by multipli-
cation of Tsym on the left of the equation.

Tsym =

[
KsM

−1
s 0

−CT
sfM

−1
s If

]
(16)

The resultant equation of motion is symmetric:[
Ks 0
0 Mf

] [
ü
p̈

]
+

[
KsM

−1
s Ks −KsM

−1
s Csf

−CT
sfM

−1
s Ks CT

sfM
−1
s Csf +Kf

] [
u
p

]
=

[
KsM

−1
s fs

−CT
sfM

−1
s fs + ff

] (17)

This procedure can be applied to Equations (4), (7),
(13) and (15), by using the following modifications on the
symmetrization matrix (16).

Tsym,m =

[
Ω2

s 0
−CT

sf,m Im,f

]
(18)

Tsym,ms =

[
Ω2

s (Is,m +Ms,am)
−1

0

−CT
sf,m (Is,m +Ms,am)

−1
Im,f

]
(19)

Tsym,CB =

[
KCB,sM

−1
CB,s 0

−CT
sf,CBM

−1
CB,s ICB,f

]
(20)

Tsym,mCB =

[
Ω2

s 0
−CT

sf,m,CB ICB,f

]
(21)
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The modes of the symmetric equation can be obtained
by solving the associated eigenvalue problem.

Ksym

[
ϕu

ϕp

]
= ω2Msym

[
ϕu

ϕp

]
(22)

This methodology, when implemented, allows to compute
the eigenvalues of a symmetric system of equations using
a symmetric eigenvalue solver, which is more computa-
tionally efficient than an unsymmetric.

4. EXAMPLES AND DISCUSSION

4.1 Cavity-plate system

The example presented in this section is taken from [4],
and it is depicted in Figure 2. This example exhibits the
limitations of using the modal coupling method via un-
coupled modes in vibro-acoustics. In the original prob-
lem, only the modal coupling (MC) and the modal cou-
pling with static corrections (MC+SC) are compared re-
spect to the physical coupling. Furthermore, the results
are confronted using a global indicator (mean square pres-
sure), excluding a comparative analysis of the local vibro-
acoustic response.
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Figure 3. Relative error [-] in prediction of vibro-
acoustic natural frequencies in the case of using air.
Results are relative to the physical coupling.

The material and model properties can be found in
Table 1. The example is showcased using two acoustic

materials: air and water. In the case of air, the assump-
tion of uncoupled in vacuo structural modes is reasonably
good, while for the water case, it is not.

Table 1. Acoustic and structural model properties
Cavity Plate

Type 3D solid 3D shell
Nodes 19 x 16 x 4 19 x 16

ρair [kg/m3] 1.225 2770
ρwater [kg/m3] 998.2 2770

cair [m/s] 346.25
cwater [m/s] 1482.13
E [GPa]; ν 71; 0.33

The methods hereby compared are the modal cou-
pling (MC), modal coupling with pseudo-static correc-
tions (MC+SC) and the modal coupling with Craig-
Bampton reduction in the acoustic side (MC+CB). All of
them are compared with the physical coupling (PC). The
reason why the Craig-Bampton method applied to both
sides (CB) is not included, is because the structural do-
main is fully embedded in the acoustic domain, which
makes the internal DOF set to be empty, making the ex-
ample unsuitable to compute structural internal modes.

4.1.1 Acoustic material: air

In this example, the acoustic material used is air (see prop-
erties in Table 1). The natural frequency error is shown in
Figure 3. As it was seen in the example from [4], the
vibro-acoustic natural frequencies are well obtained using
modal coupling (MC), exhibiting a relative error under
10−2. The performance is however improved using the
pseudo-static corrections (MC+SC), and even more us-
ing the modal coupling in structural and Craig-Bampton
in acoustic side (MC+CB).

A detail on the CPU time and memory peak allocation
is shown in Table 2. The physical coupling (PC) is taken
as reference. As one can observe, MC is the most efficient
one, but at the expense of exhibiting poorer results. In this
specific study, the MC+CB coupling is more efficient than
MC+SC. This may occur due to the inversion of the struc-
tural and acoustic stiffness matrices, a step that is needed
in MC+SC, when in MC+BC it is only needed for the
acoustic domain and with less DOF due to the inversion
of the internal stiffness matrix. The processes included
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in the computation of vibro-acoustic modes involve com-
puting uncoupled modes, building and turning the vibro-
acoustic matrices symmetric, and solving the symmetric
vibro-acoustic eigenvalue problem.

Table 2. Memory and time consumption of differ-
ent vibro-acoustic methods for vibro-acoustic mode
computation. CPU time in seconds and RAM peak
in MB.

CPU RAM CPU [%] RAM [%]
PC 18,26 250,83 100,00 100,00
MC 0,68 5,2 3,72 2,07

MC+SC 11,21 141,08 61,39 56,25
MC+CB 1,64 41,6 8,98 16,58

4.1.2 Acoustic material: water

In this example, the fluid is substituted by water. The as-
sumption of in vacuo structural modes and rigid walled
acoustic modes is no longer valid, as it is shown in Figure
4, where the relative error of the MC method is two orders
of magnitude greater than the MC+SC and MC+CB. The
relative error of the latter two is lower than 10−2.

The Modal Assurance Criterion (MAC) [7] is used
in the acoustic DOF, once the vibro-acoustic modes are
solved, to show the accuracy of the different methods
in terms of acoustic modal shapes. In Figure 5 the MC
and MC+SC methods cannot accurately describe the cor-
responding modal vectors of the acoustic domain in the
vibro-acoustic environment, when the MC+CB method
succeeds. The MAC matrices of the different methods
are compared to the MAC matrix of the physical coupling
(PC), which exhibits the reference MAC values.

The vibro-acoustic Mode 15 is depicted in Figure 6.
Only the MC+CB method (right) is able to predict the
shapes of the structural and acoustic models as the PC.
The MC+SC method fails in predicting the acoustic shape,
especially at the fluid-structure interface.

5. CONCLUSIONS

Several reduction methods for computing vibro-acoustic
modes have been presented, including a novel approach
derived from the previously developed vibro-acoustic
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Figure 4. Relative error [-] in prediction of vibro-
acoustic natural frequencies in the case of using wa-
ter. Results are relative to the physical coupling.

Craig-Bampton method. This new method retains only the
structural components in the modal domain while apply-
ing reduction, keeping the acoustic interfaces in physical
representation. Additionally, a symmetrization technique
has been introduced to reformulate the inherently unsym-
metric vibro-acoustic equations into a symmetric form.
The performance of these methods has been evaluated us-
ing a cavity-plate system, considering two fluid loading
scenarios: air and water.

The results show that modal coupling using uncou-
pled modes is accurate in predicting natural frequencies
when light fluids like air are used, but it is less accurate
for denser fluids such as water. Pseudo-static corrections
improve the accuracy of vibro-acoustic natural frequen-
cies but fail to capture modal shapes accurately. In these
scenarios, the modal coupling with Craig-Bampton reduc-
tion in the acoustic domain proves to be effective.

The methods were also compared in terms of CPU
and RAM requirements for calculating vibro-acoustic
modes. Modal Coupling (MC) is the most efficient but the
least accurate. Modal Coupling with Static Corrections
(MC+SC) requires more computational resources, offer-
ing better accuracy in natural frequencies. The Modal
Coupling with Craig-Bampton reduction (MC+CB) pro-
vides a balanced approach, offering better computational
performance than MC+SC while maintaining higher ac-
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Figure 5. MAC values of the acoustic DOF within
the vibro-acoustic modes. Water is the fluid.

curacy.
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