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ABSTRACT

Pavement quality plays a crucial role in ride comfort,
security, and vehicle pollution emissions, including tyre
rolling noise. In addition, tempestive evaluation of the
pavement conditions and localization of distresses can
reduce the overall environmental impact of road traffic
transport. These measures enhance road maintenance
planning, extend pavement lifetime and reduce cost re-
lated effects. In order to have a deeper understanding of
the road condition, a multimodal-system can be useful to
extract diverse features across different domains. How-
ever, achieving synchronous connectivity between vari-
ous devices, both online and offline, can be challeng-
ing. In this work, a new dynamic multimodal-system is
presented. The system is based on the integration of a
Tyre Cavity Microphone and a video recording device, en-
abling a road surface characterization both in terms of vi-
sual and acoustical inspection. Key challenges, such as
alignment and spatial positioning, are tackled. Special at-
tention is given to the synchronization between the mul-
tiple measuring devices. Additionally, the intrinsic con-
straints of each sensor are described. The main goal of the
ongoing project is to create a system that can localize and
assess pavements’ state during normal traffic conditions.
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1. INTRODUCTION

The condition of road surfaces directly or indirectly af-
fects various aspects of human well-being, including driv-
ing comfort, safety and noise pollution [1–11]. Thus, a
programmed monitoring is of paramount importance for
the effective maintenance of roads and for the assurance
of optimal driving conditions [12]. Common monitor-
ing techniques [13] are often characterized by their in-
trusiveness. This is exemplified by the installation of
sensors within the pavement, necessitating a destructive
approach and a frequently challenging implementation
[14–16]. Conversely, non-intrusive techniques employ in-
struments and sensors on a mobile laboratory, including
image analysis [17–19], Ground Penetrating Radar [20],
or acoustic methods for tyre-road noise measurement [21].
Traditional methods are therefore costly, time-consuming
and can disrupt traffic flow. Consequently, recent research
has focused on developing efficient monitoring techniques
exploiting machine learning and neural networks, which
can mainly be grouped into Tyre Cavity Noise (TCN)
analysis [22, 23] and image analysis [24].

TCN method is defined as the acoustic signals cap-
tured by a microphone placed within the tyre cavity of a
mobile lab, which have the capacity to indicate interac-
tions between the rolling tyre and road anomalies. The
data are acquired during normal driving conditions with-
out disrupting traffic, and are subsequently analysed. The
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analysis involves the extraction of features derived from
temporal and spectral characteristics, such as peak ampli-
tude, kurtosis, spectral centroid, and power spectral den-
sity. These features are processed using clustering tech-
niques or by employing a neural network to classify the
pavement [23, 25]. The TCN analysis method is subject
to certain limitations. For instance, the information is re-
ferred only to the surface trodden by the wheel and the
audio signal from two distinct damage sites may be sim-
ilar or different. External factors (e.g. tyre hardness, air
temperature) may also influence the TCN. A factor that
must be considered when using the TCN method is the
induced resonance phenomenon that arises when toroidal
viscoelastic material comes into contact with a rigid sur-
face [26]. Moreover, the position of the microphone sig-
nificantly impacts the measurement of the system’s re-
sponse, as the acoustic pressure inside the tyre is not equal
in all points and the microphone follows the rotation of the
tyre [27–30].

The method based on the analysis of video or image
data is undergoing rapid development within this field.
It facilitates the automatic and unattended detection of
defects in pavements through the use of artificial intelli-
gence. Such systems have demonstrated an ability to pre-
cisely localize potholes, cracks, and severities [24,31–33].
However, the limits of this method lie in the fact that
the information extracted from the video camera only
yields geometrical information coming from an illumi-
nated scene, therefore the atmospheric conditions could
influence the obtained results. Furthermore, the perspec-
tive of the camera can result in significant variations in the
appearance of road distresses [34].

With a view to evaluating road deterioration for the
reduction of noise exposure, the present work is intended
to combine both audio and video approaches for effective
road condition monitoring. This goal is achieved by in-
tegrating image-based object detection systems with TCN
measurements, thus circumventing the limitations inher-
ent in each individual method. The paper discusses the
main challenges encountered in obtaining a multimodal
system, mainly due to connection, communication, data
synchronisation or misalignment [35, 36].

2. MATERIALS

The system for the monitoring of road pavement condition
consists of a standard vehicle equipped with various sen-
sors. The sensors employed in the present work for dam-
ages detection comprise both an audio and a video device.

The audio is recorded through a Tyre Cavity Microphone
(TCM), which is an analog high dynamic range micro-
electro-mechanical system (MEMS) microphone mounted
on a printed circuit board (PCB). The PCB is placed inside
the tyre cavity, fixed to the rim and it is connected to a mi-
crocontroller, the wires connecting them pass through a
valve. The microcontroller serves for data acquisition, it
is placed within a specific case mounted outside, on the
wheel centre cup, as illustrated in Fig. 1. The video is
captured by an action camera mounted at the rear of the
vehicle via an appropriate case and adhesive mount. The
camera is placed in such a manner as to record the road
behind the vehicle. The system is further comprised of
two components: a GPS module, which is mounted on
the vehicle’s roof, and a processing unit, which is located
within the vehicle. The vehicle equipped with the sensors
appears as shown in Fig. 2.

Figure 1. The Tyre Cavity Microphone connected to
the microcontroller.

3. CHALLENGES IN A MULTIMODAL SYSTEM

The challenges experienced are attributable to both hard-
ware and software origins.
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Figure 2. The equipped vehicle.

3.1 Hardware

The primary challenge in implementing a system com-
prising multiple sensors is to ensure the establishment of
an effective connection and communication infrastructure.
The processing unit occupies a central role in this system,
as it is responsible for communicating with the devices,
receiving the acquired data, and processing it. In this re-
gard, the initial priority is to ensure optimal connectivity
for the effective functioning of the system. The TCM is
connected to the microcontroller that provides a WiFi con-
nection with the computer on board. Similarly, the camera
is connected to the processing unit in WiFi thanks to its in-
ternal network. In order to manage two wireless connec-
tions simultaneously, the computer is equipped with an
additional WiFi adapter operating at 300 Mbps. Finally,
the GPS module is connected via USB to the processing
unit. The connection system is shown in Fig. 3.

Figure 3. The connection system.

The second hardware obstacle concerns the necessity
of maintaining a sufficient acquisition frequency, which
varies between the different sensors. Consequently, the

number of acquisitions is not uniform across all sensors,
thereby not allowing immediate matching. A bottleneck is
the low GPS frequency at 1 Hz. An example to illustrate
the disparity in data sampling is to consider that the vehi-
cle travelling at 50 km/h covers 14 metres in 1 second, but
GPS would only provide 1 position for the entire segment.
Spatial accuracy can be improved with a linear fitting of
latitude and longitude separately, thereby providing an ap-
proximation of the travelled path, as illustrated in Fig. 4.
This methodology enables the acquisition of the coordi-
nates, whether real or resampled, of the initial and final
points of a fixed distance. The method is quite effective,
but when combined with the uncertainty associated with
the GPS position, errors can occur in the case of a very
curved path (such as the upper roundabout in the figure).

Figure 4. An example of linear fitting of GPS data.

The action camera, during the acquisition, records the
video at 120 Frames Per Second (FPS) and, in the mean-
while, collects metadata, including timestamps and GPS
coordinates. However, the frequency of the metadata ac-
quisition is limited to 18 Hz, meaning that location in-
formation is not available for every frame. To address
this lack of data, a linear interpolation method is used,
enabling georeferencing of every frame of the video.

Finally, the TCM allows to set the frequency of acqui-
sition and it is on the order of magnitude of the kHz, thus
ensuring the sampling of the signal of interest.

3.2 Software

The use of multiple devices also necessitates the manage-
ment of different types of data, each of which poses its
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own unique challenge. The video results are too expen-
sive in terms of both memory and duration to be analysed
in their entirety; therefore, a solution may be found in the
extraction of frames. However, this approach does not
guarantee a solution to the issue. The video is recorded
with a resolution of 1080p and a frame rate of 120 FPS to
ensure optimal resolution during movement; at a speed of
30 km/h, the analysis of 120 frames covers a distance of
only 8 meters. In addition, there is significant overlap be-
tween adjacent frames, leading to repeated analysis of the
same segment of the road. Ideally, the frames would be se-
lected to provide full coverage of the road pavement with-
out overlap. This issue has been addressed by comput-
ing the vehicle speed from the GPS coordinates, the time
passed, and the visual coverage of the camera frame. This
approach reduces the overlap to a few centimeters, avoid-
ing the analysis of the same portion of road several times,
and significantly reduces the number of frames. Assum-
ing a visual coverage of 5 meters and a speed of 30 km/h,
a total of two frames is sufficient to cover the entire dis-
tance in one second: the number of frames is decreased by
a factor of 60. It is advantageous to select only the signifi-
cant video frames, as this reduces both the number of im-
ages and the required memory occupancy. Furthermore,
reducing the number of collected frames also accelerates
the extraction process (see Tab. 1). In Fig. 5 it is shown
how frames extraction based on the speed and the distance
covered by the framing lead to a small overlap between
subsequent frames. With a complete extraction, there are
fifty intermediate frames between the two of Fig. 5, with
a small shift between each other (see Fig. 6). This results
to be a redundant information.

Figure 5. Two subsequent frames extracted basing
on the speed and the visual coverage.

Finally, it is imperative to ensure the synchronised op-

Figure 6. Oversampling of video frames.

Table 1. Comparison between extracting all the
frames and extracting them basing on speed for a
video of 5 seconds.

All frames Extracted frames
Number of frames 600 10
Size [GB] 1.83 0.294
Time [s] 178.13 3.46

eration of all the sensors. The occurrence of asynchrony
has consequences such as the misalignment of recordings
and the impossibility of an effective correlation. This
compromises the reliability of the system and invalidates
the use of a multimodal system to yield a more accurate
analysis.

In order to establish a synchronous system, it is nec-
essary to acquire data concurrently. This can be facilitated
by utilising a computer that is integrated into the system
and connected to three sensors. The computer serves as
the primary controller, starting the recording of all sensors
simultaneously. Post-acquisition, the recordings must be
correlated, and this is achieved on a space basis, whereby
a fixed distance is defined. During the measurement, the
GPS provides the coordinates of the initial and final points
every time the predefined distance is traversed. The use of
an external GPS module is preferable as it provides spatial
data in real-time, whereas the internal GPS of the camera
saves coordinates in the video metadata, which can only
be accessed once the recording is complete. Therefore, the
external GPS module enables the pre-processing of data
while the measurement is ongoing. Subsequent to deter-
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mining the range of space, the corresponding time interval
is extracted and used to correlate audio and video record-
ings within the current space segment. The audio signal
is segmented into intervals based on the computed time
ranges. The frames extracted from the camera video are
organised into folders, with each folder corresponding to a
specific time range. It is worth to notice that the time inter-
vals have to be computed differently for audio and video.
The position points of beginning and end of the fixed dis-
tance range are valid for the audio signal, indeed the TCM
is placed in line with the GPS module, while the camera
framing is shifted. The time interval used for frames sepa-
ration must therefore be calculated on shifted points. The
shift of the initial point is the sum of the visual coverage
of the camera framing and the distance between the GPS
module and the beginning of the framing, while the shift
of the final point is the distance between the GPS module
and the beginning of the framing (see Fig. 7).

Figure 7. Space interval for video frames: VC is
the visual coverage of the camera framing, D is the
distance between the GPS module and the beginning
of the framing.

At this phase, a correspondence exists between each
audio segment and a folder of frames, referring to the
same portion of space, making them available for anal-
ysis, as illustrated in Fig. 8.

4. CONCLUSION

The multimodal monitoring system developed for auto-
mated conditions and damage detection of pavements in-
tegrates audio, video and GPS sensors. This work was
aimed to improve the system’s reliability and spatial ac-
curacy by ensuring correlation between sensor outputs.
This goal was addressed through an accurate management

Figure 8. Pre/Post processing of data.

of both hardware and software components, such as en-
suring robust connectivity, managing varying sensor ac-
quisition frequencies and optimising data synchronisation.
Linear interpolation and fitting methods have been em-
ployed to successfully resolve discrepancies arising from
varying data acquisition rates and frequencies, thereby en-
hancing the precision of georeferenced data. The synchro-
nisation of audio and video data was based on spatial in-
tervals instead of time intervals and was achieved by en-
suring consistent alignment despite differences in sensor
placement and temporal recording offset. The segmen-
tation of audio recordings and the organisation of video
frames spatially is expected to simplify analysis, reduce
redundancy, and optimise computational resources. In the
following of the project, comprehensive field tests will
be conducted to validate the effectiveness and accuracy
in real-world conditions of the system. Subsequent steps
will include analysing system performance under various
road and weather conditions, improving sensor integration
and developing advanced algorithms for automated dam-
age detection and classification.
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