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ABSTRACT

Audio-visual feature synchronization for real-time speech
enhancement in hearing aids represents a progressive ap-
proach to improving speech intelligibility and user expe-
rience, particularly in strong noisy backgrounds. This ap-
proach integrates auditory signals with visual cues, utiliz-
ing the complementary description of these modalities to
improve speech intelligibility. Audio-visual feature syn-
chronization for real-time SE in hearing aids can be fur-
ther optimized using an efficient feature alignment mod-
ule. In this study, a lightweight cross-attentional model
learns robust audio-visual representations by exploiting
large-scale data and simple architecture. By incorporat-
ing the lightweight cross-attentional model in an AVSE
framework, the neural system dynamically emphasizes
critical features across audio and visual modalities, en-
abling defined synchronization and improved speech in-
telligibility. The proposed AVSE model not only ensures
high performance in noise suppression and feature align-
ment but also achieves real-time processing with minimal
latency (36ms) and energy consumption. Evaluations on
the AVSEC3 dataset show the efficiency of the model,
achieving significant gains over baselines in perceptual
quality (PESQ:↑0.52), intelligibility (STOI:↑19%), and fi-
delity (SI-SDR:↑10.10dB).
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1. INTRODUCTION

Audiovisual speech enhancement (AVSE) has emerged as
a promising solution to improve speech intelligibility in
challenging listening environments [1, 2], particularly for
people using hearing aids [3]. Using both audio and vi-
sual cues, AVSE systems improve the intelligibility of
speech, making it more intelligible even in noisy envi-
ronments [1]. For hearing aid users, this becomes espe-
cially critical as they often face problems in distinguishing
speech from background noise. However, effective fusion
of these modalities requires precise feature synchroniza-
tion, as mismatches between audio and visual features can
degrade speech enhancement performance. Feature syn-
chronization ensures that the temporal alignment between
audio and visual information is accurate, allowing for bet-
ter integration of speech-related components from both
modalities. Synchronizing features enhance the robust-
ness of AVSE systems, ensuring that hearing aids provide
clear, high-quality speech in dynamic and noisy environ-
ments, ultimately enhancing communication for individu-
als with hearing impairments.

The alignment of audiovisual features for speech en-
hancement uses both audio and visual cues to improve the
quality of speech signals, particularly in noisy environ-
ments. Hou et al. [4] introduce a deep learning framework
that combines audio and visual input to improve speech
quality. It uses convolutional neural networks (CNNs)
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Figure 1. Proposed Audio-Visual Cross-Attentional Model for Speech Enhancement

to extract features from both modalities and align them
for improved speech enhancement. Wang, Feixiang et
al. [5] introduce an attention mechanism to dynamically
align and fuse audio and visual features, improving the
performance of speech enhancement in challenging envi-
ronments. AV-SepFormer, a dual-scale attention model
based on SepFormer, uses both cross- and self-attention
to fuse and model audio and visual features. Lin et al. [6]
propose AV-SepFormer, which divides the audio feature
into chunks that match the length of the visual feature, ap-
plying self- and cross-attention to capture multimodal re-
lationships. Additionally, a novel 2D positional encoding
is introduced that incorporates positional information be-
tween and within chunks, leading to significant improve-
ments over traditional positional encoding. Ahmad et al.
[7] use SyncNet [8] is a two-stream CNN trained on 100
hours of speech videos with hundreds of speakers using
contrastive loss. It processes audio with 13-MFCC fea-
tures and video with five consecutive face-only frames,
ensuring audio-visual synchronization. SyncNet is used
in [9] for conversational AVSE, focusing on separating
audio information from speakers in a controlled environ-
ment. Junwen et al. [9] using audio-visual channels in
real-world scenarios, the ACLNet exploits inherent corre-
lations to model temporal relationships via a cross-modal
conformer. A plug-and-play multimodal layer normal-
ization mitigates distribution misalignment, while cross-
modal circulant fusion enables holistic audiovisual repre-
sentation learning.

Synchronization of audio and visual features in hear-
ing aids is vital to improve speech perception in noisy en-
vironments. Lip movements provide complementary cues
to auditory signals, helping users disambiguate speech
when audio is degraded. However, real-world challenges
such as modality asynchrony and varying speaking rates

degrade synchronization. A robust and lightweight fu-
sion is important to align and integrate multimodal inputs
dynamically. Instead of concatenation, a cross-attention-
based fusion efficiently capture temporal dependencies
and selectively emphasize the most relevant features from
both modalities, ensuring real-time synchronization in
hearing aid systems. To achieve efficient audio-visual
synchronization, we propose a lightweight cross-attention
module that dynamically aligns audio and visual features
while maintaining low computational complexity.

2. PROPOSED AVSE WITH
CROSS-ATTENTIONAL FEATURE MODULE

The overall framework for the proposed AVSE model with
the cross-attentional module is shown in Fig. 1.

2.1 Audio and Visual Encoder

The audio encoder compresses the input audio signal x ∈
R(B×T ) using 1D convolution and ReLU activation to ob-
tain the encoded features z ∈ R(B×C×T́ ), where B, C,
T , and T́ indicate batch size, output channels, time steps
(samples), and compressed time steps, respectively. The
filter size in the convolutional layer is 256 filters with size
16 and stride 8 [10].

The visual encoder is a convolutional neural network
(CNN) formulated to extract spatiotemporal features from
visuals. It consists of a 3D front-end convolutional layer
for initial shallow feature extraction from face-cropped
images with (N×224×224), generating 256-dimensional
feature vector, a ResNet-9 trunk for deeper feature rep-
resentation, and linear and upsampling layers [10]. The
resulting features from the ResNet-9 are passed to a cross-
attentional module to synchronize and fused the features
from two modalities.
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2.2 Cross-Attentional Module

This Cross-Attentional module fuses audio and visual fea-
tures by using multi-head self-attention with an additional
bias from visual information. The module consists of the
Query (Q), Key (K), and Value (V) projections for audio
features, a projection for visual features to generate an at-
tention bias, and a final output projection after attention
computation. The learnable weight matrices for audio and
visual projections are given as;

Q = WqXa;K = WkXa;V = WvXa (1)

Vbias = WvXv (2)

Where Xa ∈ R(B×T×da) represents audio fea-
tures, Xa ∈ R(B×T×dv) denotes visual features with da
and dv as dimensionality of audio and visual features.
Wq,Wk,Wv ∈ R(B×T×dv) are learnable weight matri-
ces. The audio and visual characteristics are permuted
to shape (B,T ,D) for matrix multiplications. Further,
Queries, keys, and values are split into multiple heads and
scaled dot-product is applied to obtain attention weights;

S =
QKT

√
dh

(3)

where S ∈ R(B×h×T ). The projected visual feature
Vbias is reshaped to match the attention scores, given as;

Ŝ = S + Vbias (4)

After applying softmax to normalize across time
(A = softmax(Ŝ, dim = −1)), the output of attention
is computed as O = A.V where O ∈ R(B×h×T×dh). The
attention weighted audio features are after the process are
denoted as X̃ ∈ R(B×da×T ) and the visual features re-
mains unchanged as Xv .

2.3 Separator: SE Backbone

The separator module is composed of six stacked blocks,
implementing iterative local and global modeling using
Gated Recurrent Units (GRUs). Each separator block
models local and global dependencies using Intra-RNN
(local modeling) to process the input along one dimen-
sion using a GRU and Inter-RNN (global modeling to
process the output of Intra-RNN in another dimension
using another GRU. The input is normalized and added
back to maintain stable gradients. Feature Projection with

conv(1×1) reduces GRU output size from 256 to 128 fol-
lowed by ReLU activation function. The output of the
final separator block is passed to the audio decoder block
containing transposed convolutions. Before speech recon-
struction, an ideal binary mask (IBM) is estimated to pre-
serve speech-dominant time-frequency components.

IBM(t, f) =

{
1 if|xtarget(t, f)| > |xnoise(t, f)|
0 otherwise

(5)

Where |xtarget(t, f)| and |xnoise(t, f)| are the STFT of
the clean speech and noise signals at time t and frequency
bin f . The estimated mask is applied to the noisy mag-
nitude components while preserving the original noisy
phase for reconstruction.

3. EXPERIMENTS

3.1 Dataset

The effectiveness of the proposed AVSE framework is ex-
amined using the COG-MHEAR AVSE Challenge bench-
mark data. This dataset includes TED and TEDx talks
extracted from the LRS3 corpus [11], supplemented with
background noises selected from three different reposito-
ries: the DNS Challenge [12], DEMAND [13], and the
Clarity Challenge [14]. The interfering background noise
span fifteen distinct classes, covering both stationary and
dynamic acoustic sources. Every video segment features
an individual speaker who delivers a unique utterance. To
generate distorted speech samples, the primary speech of
the speaker is mixed with an interference signal, which is
ambient noise or another competing speaker. The result-
ing mixtures vary in signal-to-noise ratio (SNR), ranging
from -15dB to 5dB for competing speakers and -10dB to
10dB for noise-only conditions. All audio files are monau-
ral, recorded at a 16 kHz sampling rate. The training cor-
pus contains 100 hours of material, while the development
set includes 8 hours. For evaluation, a 4-hour test set is
used for objective evaluations. The evaluation subset con-
sists of TED/TEDx talks not present in LRS3, ensuring
that there is no overlap with the training data.

To further validate the proposed AVSE model, we
performed experiments on the CHiME3 dataset [15], an
established benchmark derived from the GRID audiovi-
sual corpus. This dataset contains audio-visual record-
ings from five speakers, with each contributing over 1000
video samples. The visual modality was represented us-
ing 2D discrete cosine transform (DCT) features extracted

5207



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

from lip regions, while the audio modality was processed
through windowed log-filterbank analysis. This rigorous
preprocessing makes CHiME3 particularly suitable for as-
sessing cross-modal fusion capabilities in AVSE.

3.2 Training and Network Settings

The model is trained using the PyTorch library with the
RMSprop optimizer with an initial learning rate of 0.0001
and a batch size of 16. The learning rate is dynamically
adjusted using the ReduceLROnPlateau scheduler, which
reduced the rate by a factor of 0.8 upon validation loss
stagnation for 5 epochs. The training objective minimized
the negative scale-invariant signal-to-distortion ratio (SI-
SDR) loss, given below, clipped at -30 dB to ensure sta-
bility. To improve generalization, a dropout (rate=0.3) is
applied within the separator network, and random seg-
ment sampling is employed during training for implicit
data augmentation. The model is trained for 30 epochs on
a single GPU. The dataset comprised audio-visual clips,
with audio resampled to 16 kHz and video frames resized
to (128×128) pixels, preprocessed using histogram equal-
ization for improved visual feature extraction. SI-SDR
loss function is defined as:

SI − SDR = 10log10
||x||2

||x− x̂||2
(6)

L = −SI-SDR(x, x̂) (7)

where edistortion = x̂ − x, x, and x̂ represent clean
and estimated speech.

3.3 Objective Measures

The quality of the enhanced speech is evaluated using
three standard metrics: Perceptual Evaluation of Speech
Quality (PESQ) [17], Short-Time Objective Intelligibil-
ity (STOI) [18], and scale-invariant signal-to-distortion ra-
tio (SI-SDR) [19]. PESQ (ITU-T P.862) evaluates speech
quality by comparing the enhanced signal to the clean ref-
erence signal, providing a score ranging from -0.5 (poor)
to 4.5 (excellent), with higher values indicating better per-
ceptual quality. STOI predicts speech intelligibility by
measuring the correlation between the time-frequency en-
velopes of the enhanced and clean signals, yielding a value
between 0 (unintelligible) and 1 (fully intelligible). SI-
SDR quantifies signal fidelity by computing the logarith-
mic energy ratio between the target speech and residual
distortions while remaining invariant to scale differences,
with higher values indicating better performance.

3.4 Competing SE Models

To ensure a rigorous and fair comparison, this study eval-
uated the proposed model against recent AVSE meth-
ods that have been benchmarked on the AVSEC3 dataset.
The selected competing models include AVSEC3 Base-
line [20], RecognAVSE [21], DAVSE [22], LSTMSE-
Net [23], and AV-Transformer [24]. AVSEC3 baseline
[20], the official benchmark model for the AVSEC3 chal-
lenge. RecognAVSE [21], which utilizes visual-aware
feature recalibration for better noise suppression. DAVSE
[22], a diffusion-based AVSE model known for its high-
fidelity speech reconstruction. LSTMSE-Net [23], an
LSTM-driven approach optimized for temporal speech en-
hancement. AV-Transformer [24], which employs cross-
modal attention for audio-visual fusion.

4. RESULTS AND DISCUSSIONS

4.1 Result on the CHiME-GRID Dataset

To evaluate the performance of the proposed AVSE, we
conducted comparative experiments against CochleaNet
[16], a state-of-the-art AVSE model designed for hear-
ing aids, using the CHiME-GRID dataset. The evaluation
considered three challenging noise types—Bus, Cafeteria,
and Street noise—across SNRs ranging from -9 dB to 0
dB, simulating real-world hearing aid scenarios. The re-
sults show consistent improvements across objective met-
rics, with the proposed AVSE outperforming CochleaNet
under all test conditions. For speech quality, the proposed
AVSE achieves average PESQ gains of 0.88 over noisy
mixture and 0.12 over CochleaNet in Bus, Cafeteria, and
Street noise, respectively, showing particularly strong per-
formance at lower SNRs. In the challenging -9 dB Bus
noise condition, it achieves a PESQ of 2.31, compared to
CochleaNet with PESQ of 2.18, while also maintaining
superiority at 0 dB (2.69 with CochleaNet and 2.58 with
our AVSE). These results confirm the robustness of the
AVSE across diverse acoustic environments.

STOI results further support these findings, where
Fig. 2 is showing intelligibility improvements across all
noise types and SNRs. At -9dB, the proposed AVSE main-
tains 43.1%–45.1% intelligibility, which corresponds to
an 18.1%–19.2% absolute improvement over unprocessed
speech and a 2.1%–2.3% gain over CochleaNet. As the
SNR increases, performance scales accordingly, reaching
70%–75% intelligibility at 0 dB. Notably, street noise en-
vironments show stronger gains (+3.0%), while cafeteria
noise shows slightly smaller margins (+1.9%–2.8%) due
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Table 1. Performance analysis using PESQ for reconstructed speech.
Noise Type Bus Noise Cafeteria Noise Street Noise
SNR Level -9dB -6dB -3dB 0dB -9dB -6dB -3dB 0dB -9dB -6dB -3dB 0dB

Noisy Mixture 1.42 1.55 1.69 1.89 1.46 1.58 1.71 1.88 1.39 1.51 1.67 1.85
CochleaNet [16] 2.18 2.33 2.46 2.58 2.21 2.35 2.48 2.59 2.16 2.31 2.45 2.59

Proposed 2.31 2.45 2.59 2.69 2.34 2.48 2.6 2.71 2.29 2.43 2.58 2.66

Figure 2. Performance analysis using STOI for reconstructed speech.

to the presence of competing speech babble. Despite this,
the consistent 2%–3% improvements over CochleaNet re-
main significant for hearing aids. Our AVSE shows par-
ticular strength in the critical -6 dB to -3 dB range, where
it maintains a steady 3%–4% intelligibility advantage.

4.2 Results on the AVSEC3 Challenge Dataset

The comparative results in Table 2 show critical insights
regarding the performance–efficiency trade-offs in re-
cent AVSE models. Starting with the baseline (PESQ:
1.49, STOI: 0.62, SI-SDR: -1.2 dB), we observe that
the AVSEC3 baseline [20] provides only marginal im-
provements (↑PESQ: +0.02, ↑SI-SDR: +4.29 dB) de-
spite its large architecture (76M para# and 289MB), high-
lighting the limitations in challenging acoustic condi-
tions. AV-Transformer [24] achieves strong mid-range
performance (PESQ: 1.73, SI-SDR: 2.68 dB) but suffers
from computational overhead (44.7M para#), while AV-
Face [10] demonstrates better metrics (PESQ: 1.98, STOI:
0.79) with optimized parameter efficiency (9.20M para#).
LSTMSE-Net [23] prioritizes efficiency (5.1M parame-
ters, 81.6MB) but sacrifices enhancement capability (↑SI-
SDR: +5.61 dB against noisy), revealing the challenges
of recurrent architectures in modeling cross-modal depen-
dencies. RecognAVSE [21] shows selective strengths in
intelligibility (STOI: 0.68) but inconsistent quality im-

provements, whereas AV-DEMUCS [25] fails to surpass
the noisy baseline in PESQ (-0.22), suggesting real-time
optimization compromises enhancement quality. We mea-
sured the real-time factor (RTF) on Intel(R) Core(TM) Ul-
tra 7 155H, which is 0.13 (36 ms latency).

The proposed model achieves near-optimal balance,
matching AV-Face’s top-tier perceptual quality (PESQ:
1.97 vs 1.98) and signal fidelity (SI-SDR: 7.61 dB vs 7.58
dB) while reducing parameters by 36% (5.9M vs 9.20M)
and memory footprint by 36% (23.54MB vs 36.81MB).
Its consistent gains across all metrics (↑PESQ: +0.52,
↑STOI: +0.19, ↑SI-SDR: +10.10 dB) indicate superior
noise-robust feature learning, while the compact architec-
ture suggests efficient cross-modal fusion. Notably, the
0.78 STOI approaches the 0.80 clinical threshold for hear-
ing aid usability [26], and the 7.61 dB SI-SDR exceeds the
5 dB threshold for transparent enhancement [19].

We also uses DNSMOS P.835 [27] which represents
a robust objective metric for perceptual speech quality as-
sessment, specifically designed to predict three key di-
mensions of subjective human judgments: speech clarity
(SIG), background noise quality (BAK), and overall lis-
tening experience (OVRL). Table 3 shows the predicted
results of DNSMOS P.835 on the AVSEC3 challenge eval-
uation dataset. We further examine the IBM for AVSE in
terms of HIT, False (FA), and HIT-False values to evalu-
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Table 2. AVSE performance on the AVSE3 Challenge Dataset.
Models PESQ STOI SI-SDR Para# Memory ↑PESQ ↑STOI ↑SI-SDR

Noisy Audio 1.47 0.61 -5.49 — — — — —
AVSEC3 Baseline [20] 1.49 0.62 -1.20 76M 289MB 0.02 0.01 4.29
AV-Transformer [24] 1.73 0.68 2.68 44.7M 170MB 0.26 0.07 8.17
LSTMSE-Net [23] 1.55 0.65 0.12 5.1M 81.6MB 0.08 0.04 5.61
RecognAVSE [21] 1.49 0.68 2.45 — — 0.02 0.07 7.94
AV-DEMUCS [25] 1.25 0.64 — — — -0.22 0.03 —

AV-Face [10] 1.98 0.79 7.58 9.20M 36.81MB 0.51 0.18 13.07
Proposed 1.97 0.78 7.61 5.90M 23.54MB 0.52 0.19 10.10

Table 3. AVSE performance using DNSMOS P.835.
AV Models SIG BAK OVL

Noisy Mixture 2.23 1.66 1.59
AV Baseline [20] 2.22 2.03 1.69

AV-Face [10] 2.82 2.41 2.11
Proposed 2.89 2.49 2.27

ate the effectiveness of the estimated mask compared to
the ground-truth IBM.

HIT =

∑
t,f 1{Mest(t, f) = 1andMIBM (t, f) = 1}∑

t,f 1{MIBM (t, f) = 1}
(8)

FA =

∑
t,f 1{Mest(t, f) = 1 and MIBM (t, f) = 0}∑

t,f 1{MIBM (t, f) = 0}
(9)

HIT − FA = (HIT − FA) (10)

Higher HIT and lower FA indicate better perfor-
mance. Figure 3 shows the IBM performance at two SNRs
(0dB and -6dB). At -6 dB SNR, the model achieves an
accuracy of 90.6%, meaning it correctly identifies about
91% of TF units. The HIT rate of 79.91% shows that
it retains roughly 80% of the speech, while the FA rate
of 5.21% indicates low noise misclassification. This re-
sults in a HIT-FA score of 74.70%, reflecting a strong
balance between preserving speech and suppressing noise.
At 0dB SNR, the model slightly improves with accuracy
at 91.06%, HIT at 80.3%, and FA at 4.33%, demonstrat-
ing better performance, achieving better speech retention,
and further reducing noise interference.

Figure 3. IBM evaluation at different SNR levels

4.3 Impact of Cross Attentional Module

Figure 4 presents an analysis of cross-modal feature rela-
tionships in our AVSE. The triad of visualizations reveals
how temporal and structural dependencies between audio
and visual modalities contribute to enhancement perfor-
mance. The frame-wise correlation heatmap (Fig. 3a)
shows a strong diagonal pattern (r=0.82±0.03), confirm-
ing effective time-aligned feature learning. The 5-frame-
wide diagonal band indicates the tolerance of our model to
natural lip-speech asynchrony, while intermittent vertical
streaks (e.g., at t=45–50) correlate with viseme transitions
where visual cues dominate. Temporal cross-correlation
(Fig. 3b) peaks at +4 frames (80 ms, p<0.01, boot-
strapped), matching known physiological delays in speech
production. The asymmetric side lobes (wider for posi-
tive lags) suggest visual information remains predictive of
audio over longer windows than vice versa. Connected
points in Fig. 3c maintain proximity, confirming stable
feature evolution.

5210



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

Figure 4. Visualizations of audio-visual feature rela-
tionships using Cross attentional module in AVSE.

5. CONCLUSIONS

This paper presented an audio-visual speech enhancement
(AVSE) model with lightweight cross-attentional module
designed for hearing aid applications, with comprehen-
sive evaluations on both the CHiME-GRID dataset and
AVSEC3 Challenge benchmark. The key findings and
contributions can be summarized as follows. The pro-
posed AVSE system demonstrated consistent improve-
ments over state-of-the-art baselines, particularly in chal-
lenging low-SNR environments (-9 dB to -3 dB). On
CHiME-GRID, it achieved average PESQ gains of 0.88
over noisy mixtures and 0.12 over CochleaNet, while
maintaining 2.1-2.3% STOI improvements in the most
difficult conditions. Our model achieved a remarkable
balance between performance and efficiency, matching
the perceptual quality (PESQ: 1.97) and signal fidelity
(SI-SDR: 7.61 dB) of larger models while reducing pa-
rameters by 36% (5.9M vs 9.2M) and memory footprint
by 36% (23.54MB vs 36.81MB) compared to AV-Face.
Analysis of the cross-attentional module revealed a strong
temporal alignment (r=0.82±0.03 correlation) and robust
feature learning as evidenced by t-SNE visualizations.
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