DOI: 10.61782/fa.2025.0168

FORUM ACUSTICUM
aiils EURONOISE

AUTOMATIC SPEECH RECOGNITION FOR A DYSARTHRIC CHILD
SPEAKING AUSTRIAN GERMAN

Lucas Eckert! Barbara Schuppler '*

! Signal Processing and Speech Communication Laboratory, Graz University of Technology, Austria

ABSTRACT

This paper compares Automatic Speech Recognition
(ASR) systems for dysarthric child speech in Austrian
German, focusing on a case of ataxic dysarthria. While
dysarthria is well studied in adults, research on children is
limited and no speech databases exist for dysarthric child
speech in German, posing unique challenges for ASR de-
velopment. In collaboration with the child, the family and
the child’s speech therapist, we decided how to record and
annotate speech material of different styles, including read
stories, digits, calculations and spontaneous dialogues.
Using this material, experiments were conducted with dif-
ferent state-of-the-art ASR models, such as Whisper and
Wav2Vec, applying finetuning and speech augmentation
to address the limited dataset. Additionally, a recording
tool was developed so the child can record new material in
a familiar environment. Given that the ASR system shall
be integrated into a real-time assistive technology, the next
step will involve evaluating the ASR systems in real-life
scenarios with the child to determine the most suitable
option for daily use. This work demonstrates how data
augmentation, tailored system adjustments, and collabora-
tive approaches can address resource-constrained scenar-
ios. The findings contribute to developing more inclusive
ASR technologies for children with speech impairments.
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1. INTRODUCTION

Automatic Speech Recognition (ASR) has made signif-
icant advancements in recent years, achieving high accu-
racy for typical speech thanks to deep learning models like
Whisper [1] and Wav2Vec 2.0 [2]. These systems perform
well in acoustically diverse environments and can be fine-
tuned to include speakers across different speaking styles
— as long as sufficient training data is available. However,
performance drops sharply when training data is limited,
particularly for speakers with atypical speech patterns due
to regional dialects or speaking impairments. This paper
presents different ASR systems for dysarthric speech from
a child speaking Austrian German.

When ASR is part of an assistive technology, it is not
enough to train and evaluate models with global perfor-
mance measures such as word error rate (WER). During
all stages of tool creation, we need to consider the social
environment of the dysarthric child and its developmental
status. First and foremost, a speech disorder causes con-
siderable restrictions in the child’s everyday life. Mak-
ing contact with other people is a major challenge for
many when communication is characterized by misunder-
standings, repetitions or the inability to communicate con-
cerns [3]. Assistive communication technologies can sup-
port social interaction by overcoming language barriers,
but they must be designed in a way that respects the in-
dividual’s needs and avoids introducing new obstacles or
enabling unnatural communication patterns that hinder in-
teraction with peers [4]. Second, when collaborating with
the relatives of children with communication disorders, it
must be borne in mind that data acquisition must be con-
ducted in such a way that it is neither too time-consuming
nor requires too much (physical) effort, ideally as part of
every-day activities. Third, engineers and speech thera-
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pists need to collaborate to make design decisions such as
whether the aid should synthesized complete utterances
which “replace” the child’s speech, or whether the techni-
cal aid should only support communication (e.g., by pro-
viding a transcript of the spoken words to increase in-
telligibility). This is the case that we deal with here, as
given the speech therapists assessment, the child’s pro-
nunciation and language development could suffer from
less every-day speaking practise which in turn could cre-
ate an even stronger dependency on the assistive tool.

Concretely, this paper describes the development of
an ASR system tailored to one specific Austrian German
ataxic-dysarthric child speech. Thereby, two objectives
arise. The first is to present our data collection process de-
signed together with the family members and the speech
therapist of the child, which allows to gather child speech
in such a way that the process is also manageable for the
subject. The second objective is to fine-tune state-of-the-
art ASR systems, comparing the impact of different pa-
rameters and speech augmentation techniques on recogni-
tion performance. The long-term goal is that the ASR will
be used for two different tasks: 1) To provide subtitles on
a screen while the child is speaking, to support others in
(learning to) understanding the child. 2) When integrated
into the online-learning environment of the school, to help
the child to fill out exercise sheets independently from the
support teacher.

1.1 Dysarthric Child Speech

Diagnosis, aetiology, treatment and finding supportive
solutions for speech disorders require multidimensional
approaches including linguistic, psycholinguistic, medi-
cal and technical perspectives. We distinguish between
speech disorders, which affect the physical production of
sounds, and language disorders, which impact the abil-
ity to understand and use language structures. The pres-
ence of a speech disorder does thus not mean that there
is no language system developed allowing to understand
what is said and how it is said [5]. Various research on
atypical speech production by children summarized in [5]
show that the speakers intent to produce the right pho-
netic sounds, even when the listener can not identify them
correctly. This emphasizes the cognitive nature of speech
impairments in children, where the underlying system is
intact and comprehensive, but the execution may vary sig-
nificantly from typical speech.

Dysarthria constitutes a type of speech disorder where
difficulties arise from impaired muscular control over the
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speech mechanisms due to neurological disorders caused
in the central or peripheral nervous system (e.g., by condi-
tions like Parkinson’s disease, multiple sclerosis, stroke).
Childhood dysarthria occurs as a result of neurological
disorders that arise in early childhood, when motor speech
abilities have not yet fully developed. Various compo-
nents of speech production can be affected, such as phona-
tion, articulation, respiration and prosody [5,6]. In phona-
tion for example, the speaker might show a reduced vowel
space, since the articulators never reach their intended
positions, known as target undershoot. This may lead
to a lower level of contrastivity between phones and a
high variability in phonemes [5]. It is estimated that
50.000 children and adolescents in Germany are affected
by dysarthria [6]. Depending on the neurological disorder
causing the dysarthria, its severity, therapy applied and
the child’s developmental stage, the produced dysarthric
speech and its characteristics are highly individual.

The symptoms of childhood dysarthria rarely occur
in isolation. Co-morbidity is very common, with over half
of the children with speech impairments also having lan-
guage problems [5]. Although developmental speech im-
pairments in children and acquired impairments in adults
are intersectional, not much research in one field has been
applied to the other so far [5,6]. This on the one hand leads
to child speech not being included in standard research
on dysarthria explicitly. There are symptoms of adult
dysarthria that are not common in childhood dysarthria
, €.g., pauses or iterations [6]. On the other hand, both
speech development and neurological disorders have to
be considered jointly. Finally, there are characteristics
in child speech that stem from typical development, such
as short respiration cycles due to physiological factors
(e.g., small lungs or slow speech rate due to cognitive-
linguistic development). These coincide with symptoms
of dysarthria and their distinction may not always be pos-
sible [6].

The type of dysarthria of the child participating in the
present study is medium-to-severe ! ataxic dysarthria. It
is characterized by both slow articulation and speech rates
with long pauses in unusual locations in the sentence on
the one hand, and seamless joining of words on the other.
Another frequent characteristic is the insertion of vowels,
with schwa (o) being the most frequent. The child is on a
reading level normative for its age and does not have a lan-
guage impairment. The child speaks Austrian German.

!'No official severity assessment has been made, but this is
based on the speech therapist’s judgement.
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1.2 ASR for Pathological Speech

State-of-the-art ASR systems, such as OpenAI’s Whisper
[1] and Meta’s Wav2Vec [2], have demonstrated remark-
able performance across a wide range of speech tasks.
Whisper is a transformer-based model, with its largest
version,large-v3, trained on more than 5 million hours of
labelled data. It has proven to be robust to noise and gen-
eralizes well across various datasets. In a zero-shot set-
ting, meaning it has not been specifically fine-tuned for
a particular task, it achieves WERs for German of 5.5%
on Multilingual LibriSpeech, 6.4% on CommonVoice 9,
and 11.2% on VoxPopuli [1]. Wav2Vec is based on self-
supervised learning from raw audio representations that
are unlabelled for pre-training and fine-tuned on a compa-
rably small amount of labeled data. On the English Lib-
riSpeech dataset, WERs of 17.3 % were achieved for only
1 hour of labelled training data and no language model.
With 100 hours of labelled data and a transformer-based
language model, WER of as low as 1.9 % are achieved [2].

Despite their strong performance under well-
resourced conditions, both models experience significant
performance degradation when labelled training data is
scarce or when dealing with highly variable, atypical
speech. For Austrian German conversational speech,
zero-shot Whisper produces WERs ranging from 26% to
over 63%, while Wav2Vec achieves WERs between 20%
and 38% without a language model, and between 15%
and 30% when using a 3-gram language model [7]. The
challenges become even stronger for dysarthric speech,
where WERSs range from 70% to over 90%, depending
on the severity of intelligibility impairments [8]. These
results highlight the limitations of current ASR systems
in low-resource and non-standard speech settings, un-
derscoring the need for further adaptation techniques to
improve robustness in such scenarios.

Developing effective ASR solutions for dysarthric
child speech requires specialized models trained on repre-
sentative datasets — yet such data is scarce, posing a ma-
jor challenge. There exist some public datasets containing
dysarthric speech. One set is the UA Speech dataset [9],
containing speech by 19 American English speakers with
cerebral palsy. The dysarthria diagnosis is mostly spas-
tic or athetoid. Another set is the TORGO database [10],
comprising 8 English speakers from Canada also affected
by cerebral palsy or ALS, resulting in spastic, athetoid or
ataxic dysarthria. The Dysarthric Expressed Emotional
Database (DEED) [11] contains recordings of 4 British
English dysarthric speakers affected by Parkinson’s dis-
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ease. There are currently no Austrian German or Ger-
man databases with dysarthric speakers known to the au-
thors. Also, all databases contain adult, mostly spastic
or athetoid dysarthric speech, but no ataxic child speech.
Thus, no public data can be effectively included in the
training of our ASR system, and all data had yet to be col-
lected. Summing up, for the development of an ASR sys-
tem, especially the following characteristics of dysarthric
child speech need to be considered:

1. For our child, the dysarthric speech follows a clear
pattern that (after some accommodation) can be
recognized by a human listener. This is the basic
requirement needed for an ASR system to eventu-
ally be able to learn these patterns.

The high variation across dysarthric children re-
quires data from the individual (if available in ad-
dition to other datasets).

With increasing age some of the characteristics
will change over time or vanish completely (i.e.,
those stemming from typical development or those
from speech therapy), which requires continuously
learning ASR systems, so they develop with the
child’s development.

2. MATERIALS AND METHODS

Dysarthric speech can not be transcribed by lay persons,
thus spontaneous sentences need to be transcribed by indi-
viduals who are familiar with the speaker’s pronunciation.
In our case, the parents and the speech therapist of the
child created recordings and transcriptions over a longer
period of time in advance of this work (i.e., initial data set
(IDS)? The learnings from working with this set were put
into the design of a recording tool, with which the subject
can record new data at home. The tool and the extended
data set (EDS) are described in subsec. 3.2. These data
sets should contain many of the most frequently used lex-
emes, since our experiments showed that the ASR systems
can more easily identify lexemes that were in the training
data, as shown in sec. 3.1.

2.1 Initial Data Set

The initial dataset (IDS) includes single words, num-
bers, calculations, read stories, poems, jokes and sponta-

2 Ethical considerations: IDS was provided to the authors
of this paper after explicit written consent was obtained from the
parents to use the recordings in anonymized form for research
purposes. We respected the GDPR and the European Code of
Conduct for Research Integrity.
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Table 1. Types of utterances in the IDS and their amount, number of contained tokens and graphemes as well

as total duration in minutes and word and grapheme rates.

utterance type #utterances | #tokens | #graphemes | total duration | words/sec | graph./sec
spontaneous speech | 186 784 3947 19.83 min. 0.66 3.32
read digits 122 431 2575 13.75 min. 0.52 3.12
read speech 403 1467 7675 35.36 min. 0.69 3.62
total 711 2682 14197 68.94 min. 0.65 3.43

neous conversations. We first sliced the audio into smaller
chunks that can contain a word, a sentence or a coherent
utterance and are not longer than 30 seconds each. Addi-
tionally, long pauses and other audible speakers were re-
moved from the audio. In total, the IDS comprises 69 min-
utes of speech (i.e., 711 chunks with a total of 2682 word
tokens, from which 1068 are unique lexemes). These units
were sorted into three categories: 1) Spontaneous speech
includes conversations over certain topics like the child’s
condition, favourite food or games and jokes. 2) Read
digits contains single numbers and computational tasks.
3) Read speech contains stories and read words from the
speech therapist’s patho-linguistic diagnostic sessions.
For fine-tuning the models, IDS was split into a train-
ing split, containing 568 chunks, and a test split, contain-
ing 143 chunks. Between these splits, an overlap exists
between the contained lexemes. In the split used for the
initial fine-tuning and comparison of ASR-models 59%
of the lexemes in the test set are also in the training set.
This overlap is partly due to read stories and poems con-
taining many reoccurring lexemes. Most of these are high
frequency words such as the function words der, die, das,
und, mit, in, the pronouns sie, ich, es and the verbs ist, hat,
war. The most frequently occurring lexemes in the IDS
show a similar pattern as those listed in the Austrian 1M
sentences web dataset from the Wortschatz Leipzig cor-
pus [12]. The fact that 40% of the lexemes are not present
in the training set allows for an assessment of the system’s
generalization capability. However, it also indicates that,
given the limited size of the dataset, a substantial number
of lexemes commonly used in everyday language remain
unknown to the system. To assess this problem in future
work, a second dataset is created as described in sec. 3.2.

2.2 ASR Systems and Fine-tuning

For fine-tuning, all audio files were resampled to a uni-
form sampling rate of 16 kHz to ensure consistency across
models. If data augmentation techniques were applied, the
augmented audio data was incorporated into the dataset
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before training. Only training data was augmented. For
whisper [13] and wav2vec2-bert -based [14] models, the
audio was transformed into a mel-spectrogram represen-
tation using the respective feature extractors, whereas
wav2vec2 [14] was trained directly on raw audio wave-
forms. Additionally, all special characters (i.e., !?")
and similar symbols were removed from the text, and
all text was converted to lowercase to standardize the
training data. This preprocessing pipeline ensured com-
patibility between models and provided a uniform in-
put representation for training and evaluation. Due to
model size constraints, fine-tuning was only performed
for whisper-small, whisper-medium and wav2vec2(-bert)
models pre-trained with up to 300 million parameters. The
larger models whisper-large-v3 and 1 billion parameter
wav2vec2 models could not be fine-tuned.

Additionally to our own fine-tuning, models previ-
ously fine-tuned by the HuggingFace community on the
Common Voice German datasets were used as a starting
point for further fine-tuning. Common Voice will be ab-
breviated as cvXX-de, with XX standing for the version
of the set, and de for the German subset. For whisper-
small/medium, we used the models fine-tuned on cv11-de
by HuggingFace-user bofenghuang [15]. For wav2vec2-
bert the model fine-tuned on cv16-de by user sharrnah
[16] were used. The wav2vec2-xls-r-300m model fine-
tuned on cvl11-de was provided by user aware-ai [17].

2.3 Data Augmentation

We implemented the following data augmentation tech-
niques from SpeechBrain [18], while adjusting the param-
eters to the characteristics of dysarthria and the work en-
vironments of possible applications:

Clipping simulates audio clipping artifacts, which oc-
cur when the signal amplitude exceeds the dynamic range
of the recording system. First, the waveform is normalized
to a range between -1 and 1. Then, a predefined thresh-
old is applied, setting all values beyond this threshold to
the maximum or minimum value, effectively distorting the
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waveform. After clipping, the original amplitude is re-
stored to maintain a comparable loudness level. This aug-
mentation exposes the model to common distortions that
may arise due to recording limitations or speaker volume
fluctuations.

Time Drop involves randomly setting short tempo-
ral segments of the signal to zero, making parts of cer-
tain phonemes or syllables temporarily unavailable to the
model. This simulates missing speech information due
to brief interruptions, microphone dropouts, or speaker
hesitations. By training on these incomplete signals, the
model learns to infer missing speech content and improves
its ability to handle irregular speech patterns.

Frequency Drop removes random frequency bands
from the spectrogram to simulate real-world distortions
(e.g., microphone artifacts or background noise masking
certain frequencies). This forces the model to rely on
broader spectral patterns rather than specific frequency
components, thereby improving its robustness to environ-
mental noise and speaker variability.

Speed Perturbation alters the playback speed of the
audio by resampling the audio at sampling rates close to
the original, effectively simulating variations in speech
rate. Since the speech rate of our subject is slow and vari-
able, speed perturbation was applied from 80% and 120%
of the original speed, making the model more resilient to
the variations observed in dysarthric speech.

Since augmentations effectively expand the fine-
tuning dataset, comparisons with non-augmented models
must control for the number of training steps. To ensure
fairness, all models were fine-tuned until convergence,
thereby accounting for this factor.

3. RESULTS
3.1 Performance Comparison of ASR Systems

The results of inference using different zero-shot and
fine-tuned models are presented in tab. 2. Overall, the
zero-shot models perform poorly, with WERs exceeding
100%, indicating a lack of generalization to dysarthric
child speech. The high WERs of the whisper models are
due to whisper containing a language model that can hal-
lucinate in an infinite loop or it makes up several words
fitting the duration of the audio.

Even with just 568 utterances from the IDS, fine-
tuning significantly reduced the WER to approximately
54% for whisper-small. Applying augmentations as de-
scribed in sec. 2.3 further improved performance to 46%.
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While previous fine-tuning on cvll considerably im-
proved WER compared to zero-shot models and slightly
enhanced performance for models trained with augmented
data, it did not yield improvements when used in combi-
nation with only unaugmented fine-tuning data. The best
WER achieved was 46% for whisper-small and 33% for
whisper-medium. For wav2vec2-bert2.0 using the models
previously fine-tuned on cvll and cv16 shows a signifi-
cant effect, lowering the WER for unaugmented data from
93% to 57% in comparison to wav2vec2-bert2.0 without
cv16. The best wav2vec2-bert2.0 configuration yields a
WER of 44%. In the case of wav2vec2 it was not possi-
ble to generate meaningful output when only fine-tuning
with our own data. Using augmentations again largely im-
proved the WER to 50%, much more than for whisper.

To learn more about how to further improve ASR per-
formance, we analysed WER separately for lexical items
present in both the training and test splits and lexical items
appearing only in the test split. For the whisper-medium
model fine-tuned with four speed perturbation configura-
tions (index 16 in Tab. 2), lexemes appearing in both sets
had a WER of 16.5%, while unseen lexemes had a WER
of 66.6%. This highlights two key aspects: first, the im-
portance of acquiring a large and lexically diverse dataset
for fine-tuning; second, the consistency of the child’s
speech patterns, as lexemes previously encountered dur-
ing training were recognized more reliably by the ASR
when presented again.

3.2 Recording Tool and Extended Data Set

For the acquisition of additional data two factors are im-
portant: First, the recording process needs to integrate
seamlessly into the daily routines of the family and can be
done in a familiar environment (at home, at school). Sec-
ond, the new dataset needs to be diverse and distinct from
the IDS. To ensure both, we created a recording tool and
provided sentence packages, continuously updated in the
future recording process. Fig. 1 shows the tool’s graphical
user interface (GUI). It is designed in such a way that it
is easy to use for both the family and the child itself. The
child can choose which colour it wants the GUI to be in
every time it starts the application. Big buttons with intu-
itive pictograms and a plain appearance make its use easy.
Sentence packages are simple .txt-files, with one sentence
or utterance per line and can thus also be created easily
by the family or the speech therapist. They include 8-12
sentences each to keep recording session short. One sen-
tence package is loaded into the list on the top left of the
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Table 2. ASR performances on the initial dataset’s (IDS) test-split. ft-pre refers to models already fine-tuned
on healthy adult speech. ft-IDS refers to fine-tuning on IDS containing dysarthric child speech. Abbrevations:
cvXX: Common Voice XX; dc: drop chunk; df: drop frequency; cl: clip; spXX: speed perturbation at XX %.

model ft-pre | ft-IDS size | augmentations epochs | WER | index
— — — — 261 % | 1
— 568 — 10 54% | 2
— 2272 dc; df; cl 10 2% |3
— 2840 sp80; sp90; sp110; sp120 10 47% | 4
whisper-small cvll | — — — 111% | 5
cvll | 568 — 10 54% | 6
cvll | 2272 dc; df; cl 10 52 % 7
cvll | 2840 sp80; sp90; sp110; sp120 10 47% | 8
cvll | 4544 dc; df; cl; sp80; sp90; spl110; sp120 | 10 46 % 9
— — — — 178 % | 10
— 568 — 10 45 % 11
— 2840 sp80; sp90; sp110; sp120 10 40% | 12
whisper-medium evil | — o o 108 % | 13
cvll | 568 — 10 42 % 14
cvll | 2272 dc; df; cl 10 36 % 15
cvll | 2840 sp80; sp90; sp110; sp120 10 35% | 16
cvll | 4544 dc; df; cl; sp80; sp90; sp110; sp120 | 10 33% | 17
whisper-large-v3 | — — — — 130% | 18
cvll | — — — 104 % | 19
wav2vec2-xls-r- | cvll | 568 — 20 73% | 20
300m cvll | 2274 dc; df; cl 20 53 % 21
cvll | 4544 dc; df; cl; sp80; sp90; sp110; sp120 | 20 50 % 22
cvl6 | — — 20 9% |23
— 568 — 20 B % |24
wav2vec2-bert- cvle | 568 — 20 57 % 25
2.0 cvle | 2272 dc; df; cl 20 46 % | 26
cvl6e | 4544 dc; df; cl; sp80; sp90; spl110; sp120 | 20 44 %. | 27

GUI and sentences can then be chosen one by one. After
recording, the child can listen to its own recorded speech
using the play-back button and the recording can be over-
written or transcribed by the (currently best performing)
ASR-model, which can easily be updated with future im-
proved versions. The sentence and related audio are then
saved to the list on the upper right of the GUI. Once the
complete sentence package is finished, the text and audio
files are saved to a folder, in a format designed to be ready
for usage in fine-tuning. When testing the recording tool
with the child, it began using the tool independently after
a 5 min instruction phase, displaying immediate enthusi-

asm both in interacting with the tool and listening to its
own voice. Incorrect ASR transcriptions were not frus-
trating; surprisingly they amused the child and showed to
be an additional motivation to record additional material.

The tool currently includes includes 26 sentence
packages, sourced from the reading material of the
GRASS corpus [19]. Care was taken to ensure that all
words were appropriate for children and that complex sen-
tence structures were avoided. The reading material con-
tains a total of 250 sentences, comprising 1367 word to-
kens. At the child’s observed speaking rate, this will make
up approximately 35 minutes of speech.
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File

Dein Satzpaket

Was macht denn dein verstauchter Fu?
Ich spire ihn nicht mehr.

Wir wollen heute spazieren gehen.

Da mdchte ich gerne mit.

Die Kartoffeln gehdren zum Mittagessen.
Zum Schnitzel gibt es Erbsen.

Bald ist der Hunger gestillt.

Satz fir die Aufnahme:

Sechzehn ist ganz nah zwei mal.

2 Q

Transkription:

Bitte driicke auf das
Mikrofon, um den
Satz aufzunehmen.

SECHZEHN IST GANZEN A ZWEI MAL

Ich

Sieglinde zeichnet eine Figur.

Satz zuriick in die Liste | Satz erneut laden

Saltz speichern

WER: 0.3333333333333333

Fertige Satze
miisste lesen und rechnen.

Safz abspielen

Figure 1. GUI of the recording tool developed for collecting data easily from home or at school.

4. CONCLUSION

Our initial ASR results for dysarthric child speech are in
line with the overall poor WERSs reported in the litera-
ture for dysarthric speech [8]. Significant improvements
were achieved through fine-tuning and data augmenta-
tion, demonstrating the effectiveness of targeted adapta-
tion strategies, achieving best WERs of 33%. In com-
parison, for Austrian German adult speech, WERs lie be-
tween 13% and 47 % [7,20]. Furthermore, we presented
the first collection of Austrian German dysarthric child
speech, with ongoing expansion enabled by the developed
recording tool, allowing for continuous refinement of the
training corpus and adaptation to changes due to typical
development of the child.

We pursue several directions for future work on (1) re-
source generation and (2) improving ASR: (1) We plan to
generate utterances automatically for new sentence pack-
ages using large language models (LLMs), based on the
most frequent lexemes in Austrian German, utilizing re-
sources such as the Wortschatz Leipzig corpus [12]. An-
other key future direction is speaker adaptation to produce
larger datasets, independent from the recording capabili-
ties of the child, leveraging techniques such as those out-
lined in [21] and [22]. (2) The speech therapist provided
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us the notes on the consistencies of phonetic processes.
We plan to use these rules to create a knowledge-based
lexicon that could be integrated in the ASR system fol-
lowing the hybrid approach recently presented by Perikh,
A. et al. [23]. The lexicon will include statistical informa-
tion on the frequency of phonetic processes (e.g., schwa
insertion) in different phonetic contexts currently being
investigated by Galovic, M. [24]. Further improvements
will focus on adding a language model (LM) to Wav2Vec2
and Wav2vec2-Bert, exploring both transformer-based and
n-gram approaches. Training efforts may also be ex-
tended to larger models, including whisper-large-v3 and
wav2vec2-models pre-trained with 1 billion parameters,
to assess performance gains with increased model capac-
ity. To conclude, this paper shares valuable experiences
with data collection for pathological child speech. Cur-
rently available ASR systems, as powerful as they may
be on commercial tasks, they do not only perform poorly,
but "not at all” for pathological child speech. Since ASR
systems are the “bottle-neck” of assistive technology and
online learning environments, our work highlights the ne-
cessity for putting more effort in collecting data and de-
veloping assistive technology directly together with those
who need it.
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