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ABSTRACT

The EN ISO 12354-1 standard provides a physical model
for the sound reduction index R. The results of this model
can be used to calculate the weighted sound reduction in-
dex for different scenarios, which itself plays an important
role in the design of a building element. This raises the
question of how well this physical model actually reflects
reality. In this work, the physical model is first optimized
based on Bayesian inference. The optimized model can
then in turn be used to simulate the sound reduction in-
dex taking into account uncertainties. These simulations
then can provide an analysis of the construction in order to
decide whether the minimum requirements on sound insu-
lation will be met with a certain probability. For example,
it is checked how thick a calcium silicate brick wall must
be so that the weighted sound reduction index is at least
53 dB with a probability of 95 %. This is relevant as, in
the best-case scenario, building elements can be optimized
concerning the economization of material, which enables
a cost-effective and sustainable construction.

Keywords: Sound reduction index, Rw, Bayesian infer-
ence

1. INTRODUCTION

For new buildings, an optimized construction in terms of
sustainability is compulsory. Requirements on sound in-
sulation have to be met as well. Often, the question arises
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as to how thick a solid wall should be. Thin walls would
save material, whereas thick walls guarantee better sound
insulation. This paper focuses on the influence of the
thickness of a homogeneous wall on the weighted sound
reduction index Rw using a Bayesian approach.

To investigate this issue, a physical model for the
sound reduction index R is considered. This physi-
cal model is first optimized using data from laboratory
measurements of walls made of calcium silicate (Ca-Si)
blocks. This part was also discussed at Forum Acusticum
2023 [1] and at [2, 3], but has been expanded since then.

With this optimized model, the sound reduction index
is simulated by drawing realizations from a correspond-
ing probability distribution. The values for the weighted
sound reduction index can then be calculated and ana-
lyzed. This procedure is finally used for claims about wall
thicknesses that do not occur in the available data. In par-
ticular, the probability of whether a wall meets a certain
requirement on the weighted sound reduction index is es-
timated.

2. PHYSICAL MODEL

First, a physical model for the sound reduction index R is
discussed, which is based on the model in ISO 12354-1
Annex B [4] and given in equation (1). A few mod-
ifications have been implemented and are explained in
DAS/DAGA [5]. All quantities in the following equations
together with the chosen numerical values are listed in Ta-
ble 1. The second term in equation (1) denotes the Water-
house correction.

R = −10 lg(τ)− 10 lg

(
1 +

c0Stot

8V f

)
(1)

The transmission coefficient in the first term is given
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in equation (2), while the radiation factor σ is defined by
the equation (6).
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ηtot = ηint + C/
√
f (5)

The calculations of the radiation factor are strongly
based on ISO 12354-1, only the maximum value is ad-
justed due to ambiguities in the standard and because past
analyses have shown that these adjustments are appropri-
ate.

σ(f) = min

σ̃(f);σ3(f);

√
1 +

2(l1 + l2) · fc

5c0
; 2.0


(6)

Further adjustments have been made in the high fre-
quency range, where thickness resonances occur. For this
purpose, a new quantity τ0 is introduced in equation (7).
The definition of cL1 signifies that in this work a distinc-
tion is made between the effective value cL and the nomi-
nal (material) value cL1 for the longitudinal wave velocity.

τ0 =

(
cos2(u) +

1

4

(
ρcL,ex

Z0
+

Z0

ρcL,ex

)2

sin2(u) + η2int

)−1

(7)

u =
2πft

cL,ex
(8)

cL,ex = cL1
1− µ√
1− 2µ

(9)

The following variables are introduced:

fT =
√
3(1− µ)

cL1

2πt
(10)

f̃T = argmin
f

| log(f)− log(22/3fT)| (11)

τplateau =
ηref

ηtot

(
4Z0

ρcL,ex

)2

(12)

ηref = ηint +
C√

22/3fT
(13)

τW(f) = (τplateau(f)
4τ0(f))

1/5 (14)

Finally, the adjusted transmission coefficient is de-
fined in equation (15).

τadj(f) =

{
τ(f), f ≤ f̃T

τw(f) · τ(f̃T)/τw(f̃T), f > f̃T
(15)

Table 1. Quantities for the sound reduction index R.
Symbol Description Value

f Frequency in Hz
c0 Sound speed in air 340 m/s

Stot
Total surface in
reception room 85 m²

V Reception room volume 50 m³

Z0
Sound characteristic
impedance of air 418 Pa

m/s

m’ Mass per unit area 440 kg/m²

σf
Radiation factor
for forced waves See ISO 12354-1

σ̃ Radiation factor See ISO 12354-1
σ3 - See ISO 12354-1
ρ Density of the material 1760 kg/m³
µ Poisson’s ratio 0.25
t Construction thickness 0.25 m
l1, l2 Side lengths of wall Depends

cL1
Nominal longitudinal
wave velocity 2500 m/s

cL
Effective longitudinal
wave velocity Fit parameter

C Boundary loss constant Fit parameter
ηint Internal loss factor Fit parameter

γ
Shear wave contribution
factor Fit parameter
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3. DATA DESCRIPTION

For the next step, data from 24 laboratory measurements
will be used to further customize the model. These
originate from a round robin test carried out by the
Physikalisch-Technische Bundesanstalt (PTB). The sepa-
rating components are Ca-Si walls with a thickness of 25
cm including plaster. Further details on the laboratory ex-
periments can be found in [6] and [7]. Figure 1 shows
the mean progression of these 24 curves and the range re-
sulting from the mean value ±1 respectively ±2 times the
standard deviation of the measurement data.

4. BAYESIAN INFERENCE

The data is now the basis for the optimization of the phys-
ical model from section 2 by only changing some param-
eters but not the physics of the model. Bayesian meth-
ods are applied for this purpose. The Bayesian concept
of probability is characterized by the idea that probabili-
ties are not interpreted as relative frequencies but as de-
grees of belief that can be updated with new information.
For the application, a distribution is assumed which rep-
resents the knowledge of our parameter before the data is
known. This distribution is referred to as the prior distri-
bution. The data y is then combined with the prior dis-
tribution to obtain a posterior distribution. This posterior
distribution represents the knowledge of the parameter af-
ter the data is taken into account. Since the knowledge is
expressed by probability distributions, it also contains all
uncertainties of the parameters. To derive this posterior,
Bayes’ theorem from equation (16) is applied (s. subsec-
tion 4.1). The term ∝ denotes equality except for factors
that do not depend on θ. The concept of Bayesian statistics
is further discussed in several books like [8], [9], and [10].

p(θ|y)︸ ︷︷ ︸
posterior

=
p(θ)p(θ|y)

p(y)
∝ p(θ)︸︷︷︸

prior

p(y|θ)︸ ︷︷ ︸
likelihood

(16)

On the one hand, this approach is suitable when there
are few data relative to the number of parameters to be
estimated. This is because sample size plays a less cen-
tral role in Bayesian statistics than in classical statistics.
On the other hand, some of the parameters are physical
quantities for which prior knowledge exists. The term
p(θ)p(y|θ) can also be interpreted in such a way that the
parameters are pushed away from the data optimum in the
direction of physically meaningful values.

This is also the difference to the classical approach,
also known as the frequentist approach, in which θ is cho-

sen such that it maximizes the likelihood p(y|θ). The
analysis using the classic approach was presented at this
year’s DAS/DAGA [5].

4.1 Definitions and assumptions

First, the physical parameters to be adjusted are selected.
These are the internal loss factor ηint, the boundary loss
constant C, the longitudinal wave velocity cL of the plate,
and γ. Therefore, ϕ = (ηint,C, cL, γ)

T ∈ R4 is defined as
the vector of physical fit parameters.

In addition to these, a covariance matrix is also nec-
essary, which is defined as Σ ∈ R21×21 and indicates
the third-octave band-dependent variances on the diago-
nal and the covariances between two third-octave bands
outside of it. For this purpose, θ = (ϕ,Σ) is denoted as
the tuple of ϕ and Σ.

The measurement curves are each denoted as yi with
i = 1, . . . , 24. A multidimensional normal distribu-
tion is assumed for these if ϕ and Σ are given, i.e.
yi|θ ∼ N21(Mi(ϕ),Σ). Here, Mi : R4 → R21 denotes
the physical model as a function of the physical fit param-
eters. This results in a potential model curve for each ϕ.
The index in Mi indicates that the properties of the i-th
wall are taken into account. This refers in particular to the
side lengths.

The notation y in equation (16) represents the
vector of all 24 measurement curves, i.e. y =
(yT1 , y

T
2 , . . . , y

T
24)

T ∈ R504, where 504 = 21 · 24 results
from the number of third octave bands times the number
of measurement curves. It is assumed that the measure-
ment curves are independent of each other.

4.2 Prior distributions

Maximum Entropy Prior (MEP) is applied to convert
physical prior knowledge into a prior distribution. The
MEP was introduced by Jaynes [11, 12] and further dis-
cussed in [13], [14], [15] and others.

If prior knowledge of the expected value, vari-
ance, minimum, and maximum is available for a one-
dimensional parameter, then the truncated normal distri-
bution results as the prior distribution [15, Page 201].

The prior assumptions for the physical fit parameters
ϕ are shown in Table 2. Note that for the longitudinal ve-
locity cL the effective value and not the nominal value is
meant. These assumptions are based on individual expe-
rience, but this only plays a minor role for the results as
long as other prior knowledge does not deviate too much
from the Table 2 values.
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Table 2. Prior assumptions for the parameters ϕ
Parameter Mean Variance Min. Max.
ηint 0.02 0.012 0.005 ∞
C 2 1 0.25 5

cL in m/s 1000 3002 700 5000

γ 0.77 0.22 0.55 0.95

Both the variances and the correlations are required
for the prior distribution of the covariance matrix. The
variances are based on the work of Wittstock (2015) [16].
With MEP, this results in the exponential distribution with
the calculated average as the expected value for each one-
third octave band.

The LKJ (Lewandowski, Kurowicka, Joe) [17] distri-
bution is employed to model prior knowledge about cor-
relations. This distribution is given by p(Ω|ν) ∝ |Ω|ν−1

for each correlation matrix Ω. The parameter ν represents
the prior knowledge about the correlation. If ν is less than
one, high correlations are assumed; if ν is greater than
one, low correlations are assumed; and if ν = 1, no prior
knowledge of the correlation is assumed. Here, ν is mod-
eled as an exponential distribution with an expected value
of one.

The equations (17) show a summary of all prior as-
sumptions. Here, N T denotes the truncated Gaussian,
where the hyperparameter ak, bk, and the support Sk

are chosen such that the properties satisfy Table 2 for
k = 1, 2, 3, 4. While w2

j represents the variances calcu-
lated in [16] for j = 1, . . . , 21.

yi|θ ∼ N21(Mi(ϕ),Σ),

θ = (ϕ,Σ),

ϕk ∼ N T (ak, bk, Sk),

Σ = DΩD,

D = diag(σ1, . . . , σ21),

σ2
j ∼ Exp(1/w2

j ),

Ω|ν ∼ LKJ(ν),

ν ∼ Exp(1).

(17)

4.3 Posterior sampling

The software STAN [18, 19] is used to derive the posteri-
ors. For the sampling procedure, the No-U-Turn Sampler
(NUTS) is applied, which allows random numbers that are

distributed like the posteriors to be drawn without calcu-
lating them analytically. The notation, θ(s) represents the
sample number s for s = 1, . . . , S. For the following
steps, S = 4000 samples are utilized for each parameter.

4.4 Posterior results

A summary of the results of the physical fit parameters ϕ
is shown in Table 3. While cL, γ, and ηint are credible, C
deviates quite strongly from what is expected.

Therefore, a second model variant under the condition
that C = 0.91, and ηint = 0.01, which are the values ac-
cording to ISO 12354-1, was applied. In this case, a shift
of the model curve is required. Figure 1 compares these
models by visualizing 1

S

∑S
s=1 Mi(ϕ

(s)). As the model
curves are generated for each wall, the thickness of the
curves reflects the influence of the wall properties. The
Figures 2, 3, 4, and 5 compare the posterior samples be-
tween these two model variants with each other and with
sampling from the prior densities.

For the future steps, the focus is on the model for
which ηint and C are considered as non-fixed parame-
ters since this has the better quality according to mea-
sures such as leave-one-out cross validation (LOO-CV)
and WAIC [20]. The model with fixed parameters ηint and
C only serves as a comparison.

The results of the standard deviations and correlations
are summarized in Figures 6 and 7. For the standard de-
viations, both the median curve and the corresponding
quantile ranges are shown. The values are also compared
with the calculations according to Wittstock. The corre-
lation was averaged across all sampled matrices. It can
be seen that the correlations in the one-third octave bands
below the critical frequency (≈ 240 Hz) are rather weak,
whereas the one-third octave bands above correlate rather
strongly. An explanation might be that below the criti-
cal frequency the sound transmission is dominated by the
forced transmission. The individual structural behavior
does not play a significant role.

Table 3. Posterior summary of fit parameters
Quantiles ηint C cL γ

2.5% 0.005 3.44 1019 0.57
25% 0.007 3.91 1047 0.60
50% 0.009 4.16 1061 0.61
75% 0.012 4.41 1075 0.64
97.5% 0.020 4.85 1100 0.68
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5. ANALYSIS OF Rw

The optimized model discussed is applied to simulate the
sound reduction index. Let W (t) be the properties of a
Ca-Si wall with a thickness of t meter and the rest as in
the data (see Table 1). As before, the notation MW (t)(ϕ)
is used for the sound reduction index of a wall with the
properties W (t) as a function of the parameters ϕ.

The difference between the model and the measure-
ment curve is simulated by drawing from a N21(0,Σ

(s))
distribution for each s. These 4000 simulated vec-
tors of differences are each added to the corresponding
MW (t)(ϕ

(s)). This procedure is carried out in steps of one
cm with wall thicknesses t from 0.18 meters to 0.36 me-
ters. This results in 4000 simulated shapes of the sound
reduction index R for each wall thickness, which can then
be used to calculate the weighted sound reduction index
Rw according to ISO 717-1 [21]. Note that by using all
4000 draws, the distribution and thus the estimation un-
certainties of the parameters are taken into account.

The results are shown in Figure 8. The blue points in
this figure show a comparison with the model variant in
which the internal loss factor ηint and the boundary loss
factor C are fixed.

These simulated values of the weighted sound reduc-
tion index Rw can then be utilized to estimate the proba-
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bility of specified threshold values being exceeded using
relative frequencies. These results for probabilities of at
least 0.5 are shown in Figure 9.

On the one hand, it can be seen that, according to this
analysis, very high requirements of at least 59 dB need
correspondingly thick walls of 36 cm to be fulfilled with
a probability of about 90 %. On the other hand, low re-
quirements of 50 dB are almost always met also with 18
cm walls.

Assuming 53 dB is set as the threshold value, the
question arises as to the probability with which this should
be reached. If this is to be fulfilled in at least 90 % of
cases, then a thickness of 21 cm is sufficient, and for 95 %
it should be 22 cm.

6. DISCUSSION

In this work, the physical model according to ISO 12354-1
was first adapted and then optimized using Bayesian
methods. With the help of simulations based on the physi-
cal model and probability assumptions, sound reduction
index R curves of Ca-Si walls at different thicknesses
were simulated. These simulated curves were in turn
taken to provide information on the distribution of the
weighted sound reduction index Rw depending on the wall
thickness.
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Figure 9. Estimated probability of Rw exceeding a
threshold depending on the wall thickness

However, it should be noted that the accuracy of the
physical model cannot be verified for wall thicknesses
other than 25 cm, but since the model itself is strongly
based on the surface area mass, it is credible that the
model still fits.

This procedure should therefore be repeated on the
basis of other data. In addition to calcium silicate walls
with different wall thicknesses, other materials such as re-
inforced concrete walls or lightweight concrete are also
conceivable. In addition, further physical models for the
sound reduction index R are to be utilized as a basis, in
particular model variants based on the in-situ case.

Overall, it can be stated that this approach provides
promising results, but further data and steps for validation
are still necessary. However, the procedure itself remains
identical regardless of the chosen physical model behind
or the exact nature of the data.
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[5] Deutsche Gesellschaft für Akustik e.V., ed.,
DAS/DAGA 2025 - 51st Annual Meeting on Acoustics,
2025.

[6] W. Weise and V. Wittstock, “Using round robin test
results for the accreditation of laboratories in the field
of building acoustics in germany,” Building Acoustics,
no. 12, pp. 189–206, 2005.

[7] DIN EN ISO 10140-5:2021-09, “DIN EN ISO 10140-
5:2021-09, Akustik- Messung der Schalldämmung
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