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ABSTRACT* 

Sound waves are affected by viscous and thermal losses, 

which manifest mainly inside a thin region close to the 

domain boundaries, the boundary layers [1,2]. Losses at 

boundaries cannot usually be neglected when modelling 

small or intricate devices, such as micro-transducers and 

metamaterials [3]. Over the last years, several numerical 

methods have been proposed and implemented to include 

viscothermal losses. Some methods assume restrictive 

hypotheses, as in the cases of the low reduced frequency 

(LRF) model by Beltman or the boundary layer impedance 

(BLI) reported by Berggren [4,5]. A full implementation 

using the Finite Element Method (FEM) was described by 

Malinen et al. and later included in commercial FEM 

software [6]. The Boundary Element Method (BEM) has 

also been adapted by Cutanda Henríquez and other authors 

as a full implementation of viscothermal losses, and it is 

employed as a research tool originally based on the open-

source software OpenBEM [7,8,9]. This contribution 

summarizes the work done on the BEM with losses. 

Current work on the method will be described. 
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1. INTRODUCTION 

In the past two-three decades, the state of the art regarding 

the modeling of acoustics with viscous and thermal losses 

has seen a variety of new approaches, as described in the 

abstract. Several of these modeling techniques have been 

implemented in commercial software [10].  

However, the user is left with a choice between methods 

with restrictive hypotheses such as the low reduced 

frequency model and the boundary layer impedance [4,5], 

or full methods with the only restrictions of linearity and no 

flow, existing in FEM and BEM [6,7,8,9]. The latter 

methods have the drawback of a heavy computational 

burden which places many relevant simulation problems 

almost or totally out of reach. Problems involving relatively 

large setups, high frequencies or intricate geometries with 

narrow passages cannot be treated with methods with 

restrictions [11,12]. 

2. BEM WITH LOSSES: REDUCED METHODS 

There has been research in the past few years towards 

reducing the computational burden of the BEM with visco-

thermal losses [13-14]. The BEM has the advantage of 

being based on a discretization of the domain boundary, not 

the domain itself as in FEM. This means that the very thin 

boundary layers do not need to be represented with tiny 

elements as is the case in the full FEM with losses. 

However, the BEM presents full, frequency dependent 

matrices that thwart its initial reduced nature. Ref. [13] 

presents an improved version of the BEM with losses in 

[7,9], where the coordinate changes have been simplified 

and the system of equations reduced to the same size of the 

lossless BEM. Ref. [14] introduces a Model Order 

Reduction (MOR) technique to a BEM implementation 
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with losses, this time based on the more simplified 

Boundary Layer Impedance. 

New research is ongoing with the aim of extending MOR to 

full BEM with losses, possibly combining it with fast 

multipole methods. 

3. CONCLUSIONS AND FUTURE TRENDS 

There is a need for fast, reliable and not restricted modeling 

techniques that can deal with problems yet unreachable, 

such as intricate metalmaterials, minute transducers and 

acoustic devices such as hearing aids. Numerical 

optimization also needs such fast simulations to run and 

would open losses-controlled devices to numerical design. 

The future probably belongs to a combination of advanced 

MOR methods and a yet more physics-oriented treatment of 

losses. Brute-force discretizations such as in the full FEM, 

or full BEM, with losses are inefficient. The BLI approach 

makes use of a simplified description of the boundary layers 

to reduce them to boundary condition. The LRF takes 

advantage of the behavior of the fluid within certain 

geometries. In this line, we need methods that cleverly 

employ the physical behavior of the fluid in an efficient 

description with less restrictive constraints [10]. 
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