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ABSTRACT

Sound source localisation relies on spatial auditory cues,
which are described by the head-related transfer function
(HRTF). In natural free-field listening, individuals per-
ceive sounds filtered by their own HRTFs. Conversely,
binaural (headphones-based) reproduction uses HRTFs to
render virtual auditory stimuli. However, in practice,
binaural reproduction typically employs non-individual
HRTFs, which can impair realism and localisation accu-
racy, introducing phenomena such as front-back and up-
down confusion. Beyond behavioural assessment, per-
ceivable differences under the two rendering conditions
can be investigated from a neurophysiological perspec-
tive. This study uses electroencephalographic data from
an existing localisation study to examine disparities in
front-back confusion between free-field and headphone-
based (non-individual HRTF) conditions. A multilayer
perceptron trained on single-trial event-related potentials
classified sound source location pairs symmetric around
the interaural axis. Single-trial decoding accuracy corre-
lated with behavioural front-back confusion.
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1. INTRODUCTION

The human auditory system localises sounds using spatial
auditory cues such as interaural time differences (ITD),
interaural level differences (ILD), and monaural spec-
tral cues. These cues, unique to each individual due
to anatomical variability, are encapsulated within Head-
Related Transfer Functions (HRTFs). Although individual
HRTFs enable precise spatial auditory perception, their
practical application is limited due to the complexities in-
volved in measurement [1]. Consequently, non-individual
HRTFs, often recorded using standardised mannequins
such as KEMAR, are widely adopted despite potential in-
accuracies, including increased rates of front-back confu-
sion due to inadequate simulation of spectral cues.

Traditional behavioural methods assessing localisa-
tion performance with HRTFs rely heavily on subjective
reports, which can have low repeatability [2]. Electroen-
cephalography (EEG) provides an objective alternative by
recording cortical neural responses associated with audi-
tory spatial perception, potentially bypassing some limi-
tations inherent in subjective feedback.

Previous approaches relating neural response varia-
tions to perceptual outcomes show promise [3]. Stud-
ies employing event-related potential (ERP)-based decod-
ing have successfully discriminated horizontal and me-
dian plane sound locations [4, 5] under free-field listen-
ing. More recent work has expanded on these decoding
paradigms, indicating lower decoding accuracy for non-
individual HRTFs, which was correlated with front-back
confusion rates [6]. However, trials were averaged to in-
crease signal-to-noise ratio. Decoding location from a sin-
gle trial is more advantageous as it paves the way for real-
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time applications of EEG-based decoding.
Consequently, this study expands on the decoding ap-

proach of [6] by using single-trial decoding with a neural
network instead of logistic regression with averaged trials.

2. METHOD

We re-examined EEG data from [6], where twenty-two
participants localised auditory stimuli under free-field
and headphone-based rendering using the KEMAR HRTF
from the SONICOM database [7]. Each participant sat in
the centre of a spherical loudspeaker array, stabilised with
a chin rest. Stimuli comprised a 1000 ms adapter from
12 azimuthal positions (30° increments), followed by a
100 ms probe from four locations (Az. 30°, 330°, 150°,
and 210°). All stimuli were presented at 65 dB SPL.

EEG data underwent band-pass filtering (0.1–40 Hz),
epoching (-100 to 600 ms) and downsampling (128 Hz).
To mitigate artefacts whilst maximising epochs, our arte-
fact rejection differed from [6]. Amplitude thresholding
rejected epochs with maximum amplitude above ±200 µV
or below ±1 µV. Single-trial ERPs were classified using
a multilayer perceptron (MLP) neural network. Feature
vectors were constructed by concatenating electrodes and
time points, and scaled using Z-score standardisation. The
MLP architecture consisted of an input layer, a hidden
layer with 512 units (ReLU activation), a dropout layer
(0.4), a second hidden layer with 256 units (tanh activa-
tion), another dropout layer (0.4), and an output layer with
a sigmoid activation function. Training used the Adam
optimiser (learning rate of 0.00001) with binary cross-
entropy loss. Model performance was evaluated through
10-fold stratified cross-validation for each subject. Data
were balanced across subjects, location pairs, and spatial
conditions (N=80). Separate networks were trained per
subject, location pair (Az. 30 vs 150, Az. 330 vs 210),
and spatial condition (Free-field, KEMAR), each for 35
epochs with a batch size of four.

3. RESULTS

Decoding accuracy data were averaged across location
pairs and spatial conditions for correlation with be-
havioural confusion. Front-back confusion rates from be-
havioural responses were negatively correlated with de-
coding accuracy (r = −0.51, p < 0.05).

4. CONCLUSION

Our findings demonstrate a significant correlation be-
tween location decoding accuracy and behavioural front-
back confusion rate from single-trial ERPs. This cor-
relation from single-trial decoding highlights the poten-
tial for EEG-based approaches to inform HRTF selection
or training paradigms aimed at mitigating confusion in
headphone-based spatial audio applications.
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