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ABSTRACT

In a cocktail party scenario, the human auditory system
can focus on a single stimulus while suppressing others
identified as noise [1]. In the context of neuro-steered
hearing devices, auditory attention decoding (AAD) aims
to replicate this process using different algorithms that
decode electroencephalography (EEG) signals to identify
the attended stimulus. Traditional approaches often rely
on linear models to establish relationships between neu-
ral activity and auditory inputs. However, linear algo-
rithms face significant limitations when decoding a com-
plex non-linear system like the brain. The emergence of
deep learning has enabled the development of novel non-
linear algorithms, which have shown promising results. In
this study, different linear and non-linear algorithms are
implemented and evaluated using publicly available data.
Furthermore, different methods for training deep learning
models are considered to enhance the final model accu-
racy. The results are analyzed to assess the advantages and
limitations of linear versus non-linear approaches in real-
world scenarios. This work provides a detailed compari-
son between different AAD methodologies, offering valu-
able insights for applications in smart hearing aids, audi-
tory prostheses, and hearing-related medical diagnoses.
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1. INTRODUCTION

In scenarios where multiple speakers, background noise,
or music are present, our auditory system can distinguish
the attended speaker from other sources by suppressing
or ignoring them [1]. This auditory ability diminishes
with age, and individuals with congenital hearing impair-
ment are similarly affected. Current hearing devices and
cochlear implants often perform poorly in complex listen-
ing environments—such as at a cocktail party, in eaves-
dropping situations, or while driving—because they typ-
ically identify the attended source based on loudness or
location. Decoding the desired auditory source directly
from the user’s brain activity could provide crucial infor-
mation for neuro-steered hearing devices, thereby enhanc-
ing the performance of traditional devices in challenging
scenarios.

The electroencephalogram (EEG) is the preferred
method for measuring brain activity for auditory attention
decoding (AAD) because it is non-invasive, cost-effective,
and scalable; features that facilitate its use in everyday set-
tings. In [2,3], the authors established a direct relationship
between the EEG signal and the low-frequency envelope
of the attended stimulus. When linking the attended stim-
ulus with the brain activity, researchers distinguish be-
tween forward and backward models based on whether
the stimulus or the EEG signal is predicted. Backward
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models have demonstrated superior performance by pre-
dicting the attended speech envelope from the EEG sig-
nal [4]. Consequently, this study primarily considers the
backward paradigm (see Fig. 1 a)).

Several real-time [5] and real-life [6] AAD implemen-
tations have been conducted, and new portable, comfort-
able EEG devices continue to emerge [6]. These experi-
ments only considered classical approaches—specifically
linear methods—which have been regarded as state-of-
the-art in terms of efficiency and performance. However,
in recent years the advent of deep learning techniques
significantly impacted data processing tasks. In the field
of AAD, recent studies introducing new non-linear meth-
ods [7–9] and more extensive datasets [10] have enabled
the development of complex non-linear models that out-
perform classical methods.

Unlike previous works, our study incorporates inno-
vative deep learning models using the same dataset, al-
lowing for a rigorous analysis of their advantages and lim-
itations compared to traditional methods. This provides a
comprehensive evaluation of the current state of auditory
attention decoding.

2. AAD ALGORITHMS REVIEW

2.1 Linear models

2.1.1 Linear regression

Linear supervised AAD models facilitate the estimation of
the attended stimulus by reconstructing the speech enve-
lope (̂sa) applying a decoder matrix on the EEG lagged
signal [3]. This reconstruction is achieved by linearly
combining time-lagged sequences from the EEG chan-
nels, as expressed by:

ŝa(t) =

C∑
c=1

L−1∑
l=0

dc(l)xc(t+ l) (1)

where xc(t) denotes the value of the c-th EEG channel
at time t, dc(l) represents the decoder coefficient corre-
sponding to the l-th time lag corresponding to the c-th
channel, and L and C indicate the total number of time
lags and EEG channels, respectively.

Assuming T samples, the decoding coefficients are
obtained by minimizing the mean squared error (MSE)
between the predicted speech envelope ŝa = Xd and the
actual envelope sa:

argmin||sa −Xd||22 (2)

with X = [x(0)...x(T − 1)] ∈ RT×LC and s(a) =
[s(0)...s(T − 1)] ∈ RT×LC . This leads to the solution
d̂ = (XTX)−1XTsa [4], where Rxx = (XTX)−1 cor-
responds to the autocorrelation matrix and Rxsa = XTsa
represents cross-correlation matrix. Thus, the decoder
matrix is estimated as: d̂ ∈ RLC×1.

Although these linear models offer simplicity with
considerable performance, overfitting remains a common
issue in AAD due to the typically limited size of avail-
able datasets. To mitigate this, Ridge regression is fre-
quently employed, incorporating to Equation 1 an L2-
norm regularization term when computing the decoder
matrix: λz||d||2 with z = trace(XXT)/LC [11] Here,
λ denotes the regularization hyperparameter that penalizes
large decoder weights, and it is determined by selecting an
optimal value from a predefined range using a validation
procedure.

In this model the reconstructed envelope is correlated
with both the attended (ρ1) and the ignored (ρ2) real en-
velopes. The higher correlation coefficient, ρ, is associ-
ated with the attended stimulus, providing a measure of
the model’s accuracy in decoding auditory attention in a
multi-speaker scenario (Fig. 1 a)).

2.1.2 Canonical correlation analysis CCA

In section 1, backward models are presented as the
top-performing models in Auditory Attention Decoding
(AAD). However, Canonical Correlation Analysis (CCA)
offers a hybrid approach (see Fig. 1 b)), integrating both
forward and backward modeling techniques to enhance
decoding performance. This model proposed in [12] to
solve the AAD problem, identifies optimal linear trans-
formations for both EEG signals and speech envelopes,
thereby minimizing irrelevant variance and maximizing
mutual correlation between the transformed domains.

Mathematically, CCA seeks to determine a set of
backward spatiotemporal filters, denoted as wx ∈
RLC×1, and forward temporal filters, wsa ∈ RLa×1,
applied to the EEG and stimulus domains, respectively.
These filters maximize the correlation:

max
wx,wsa

wT
xRxsawsa√

wT
xRxxwx

√
wT

saRsasawsa

(3)

This optimization is typically solved via generalized
eigenvalue decomposition, where the optimal filters cor-
respond to the eigenvectors with the largest eigenvalues.
By selecting the top J eigenvectors, we obtain filter ma-
trices Wx ∈ RLC×J and Wsa ∈ RLa×J . As depicted
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Figure 1. Different analytical pipelines followed for Auditory Attention Detection (AAD). (a) Implements only
a backward decoder for Ridge regression and non-linear models. (b) Incorporates both a backward decoder and
a forward encoder for Canonical Correlation Analysis (CCA), extracting multiple components.

in Fig. 1 b) for the classification task, these J correlation
coefficients, both the ignored and the attended, serve as
features for linear discriminant analysis (LDA) classifiers.
Further details regarding specific model parameters and
implementation can be found in Section 4.

2.2 Non linear models

2.2.1 CNN

In [8], two deep-learning-based backward models (map
EEG signal to stimulus) are proposed. These algorithms
predict the ongoing sample of the input sequence, op-
erating in an anti-causal fashion. Among the two mod-
els presented in the study, we selected the Convolutional
Neural Network (CNN) model, based on the original
network EEGNet [13], as it proved to be a more effi-
cient network when compared with the alternative Fully-
Connected Neural Network (FCNN) solution. This model
applies convolution operations along both temporal and
channel dimensions to extract features from the EEG. Af-
ter that, a depth-wise separable convolution is employed
to capture global features, which are fed into a linear clas-
sifier to predict the initial sample of attended stimulus.

2.2.2 EEG Conformer

Recognizing that the CNN model is relatively simple, we
explored more complex architectures in this study. The
network proposed in [9], known as EEG Conformer, is
considered state-of-the-art for EEG classification, hav-
ing achieved superior results on motor-imagery (MI) and
emotion detection datasets. This network integrates some
Convolutional modules from EEGNet with a transformer

self-attention block, thereby combining local feature ex-
traction with global context modeling. For adaptation to
the auditory attention decoding (AAD) paradigm, the net-
work was modified to predict the ongoing segment of the
envelope, as for the CNN approach, and an extensive hy-
perparameter search was conducted.

2.2.3 VLAAI

The study in [7] describes a convolutional network archi-
tecture, VLAAI, which was evaluated on the SparrKULee
dataset [10] and outperformed both CNN (see section
2.2.1) and linear models. The architecture comprises N
distinct blocks, each containing a CNN module with M
consecutively stacked convolutional layers. The model
also includes an output context module that applies a left
zero padding to the convolutional operation. Unlike the
previous non-linear models, which predict only the ongo-
ing segment of the sequence, VLAAI predicts the entire
window at each forward pass. Moreover, since the dataset
used differed from that used in the original study, we per-
formed an independent parameter search.

3. DATA: DTU DATASET

This work relies on a well-established dataset, known as
the DTU dataset [14], to train and evaluate the models
described in previous sections. The dataset comprises
recordings from 18 subjects who listened to one of two
competing audio streams, each featuring a male and a
female narrator reading a book in Dutch. All subjects
were young, normal-hearing individuals, and the record-
ings were obtained under various simulated reverberation
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scenarios. A 64-channel BioSemi ActiveTwo system sam-
pled at a frequency of 512 Hz is employed to obtain the
EEG signals.

The extraction of the speech envelope was conducted
using the COCOHA MATLAB toolbox [15]. The func-
tion co auditoryfilterbank.m is used to imple-
ment a Gamma-tone filter bank on the unprocessed audio
signal, sampled at fs = 44100Hz. The signal is decom-
posed into 31 frequency bands, with center frequencies
equally spaced on the Equivalent Rectangular Bandwidth
(ERB) scale, ranging from 80 Hz to 8000 Hz. The en-
velope of each sub-band is then computed by taking the
absolute value of the filtered signal and applying a nonlin-
ear compression by raising it to the power of 0.3. Subse-
quently, the audio is down-sampled to align with the EEG
sampling rate (fs = 64Hz), and all frequency compo-
nents are aggregated to compute the average and establish
the final envelope.

The COCOHA MATLAB toolbox was also utilized
to preprocess the EEG signal for the Auditory Attention
Decoding (AAD) task. The signal is down-sampled to
fs = 64Hz and subjected to a second-order Butterworth
filter operating within the frequency range of fl = 0.5Hz
to fh = 32Hz. For further details on EEG preprocessing
and artifact removal, refer to the preprocessing pipeline
implemented in preproc data.m, as described in [14].

4. METHODS

4.1 Validation procedure

AAD datasets contain subject-specific information
recorded across different trials. Including data from the
same trial in both training and validation could lead to
misleading results, as models might learn trial-specific
patterns, causing overfitting [16]. To prevent this, we im-
plement a cross-trial validation procedure, distinguishing
between three different approaches: subject-specific (SS),
subject-independent (SI) and population procedures.

For subject-specific decoders (SS), models are trained
and evaluated using data from the same individual, result-
ing in one model per subject. Given the limited avail-
ability of subject-specific data, we applied a 5-fold cross-
validation strategy. The total number of trials was divided
into five equal sets (e.g.: 12 trials per set in the DTU
dataset). One set was used for validation, another for test-
ing, and the remaining three for training.

For subject-independent decoders (SI), we used a
leave-one-subject-out (LOSO) validation approach. The

test set consisted of a single subject, while the remaining
subjects were included in the training and validation sets.
Five randomly selected subjects were assigned to the val-
idation set and the rest of them formed the training set. A
single model per subject is obtained when using this vali-
dation paradigm.

In addition to these validation strategies, we imple-
mented a population-level baseline model, trained on data
from all subjects. In this case, we applied the same 5-
fold cross-validation strategy as in the subject-specific ap-
proach to enhance robustness. This resulted in a single
model per dataset per fold. The population model served
as a baseline for the subject finetuning (SF) training strat-
egy (see Section 4.3).

4.2 Evaluation metrics

4.2.1 Decoding accuracy

The accuracy obtained by the model is calculated by com-
paring the Pearson r coefficients of the attended and unat-
tended stimuli. This Pearson correlation coefficient r
quantifies the similarity between two temporal sequences
ranging from -1 to 1, where 1 indicates maximum corre-
lation and 0 denotes no correlation. The envelope corre-
sponding to the higher coefficient is identified as the at-
tended one. Classification accuracy is determined as the
ratio of correctly predicted windows to the total number
of windows. Accuracy depends on window size, as larger
windows incorporate more samples, increasing the like-
lihood of correct classification. Six window sizes were
evaluated, ranging from 1s to 50s, the last one correspond-
ing to the trial length of the DTU dataset.

4.2.2 MESD

Decoding accuracy, as previously mentioned, is a length-
dependent metric that yields varying results based on the
evaluation window. In [17], a unique metric is introduced
to assess overall model performance. This metric offers
insight into the model’s potential performance in a real
hearing-aid device by quantifying the minimal-expected
switch duration (MESD) using a Markov chain approach.
It is measured in seconds, and a lower value is preferable
for the model, as it indicates the minimum expected dura-
tion required for an attention shift. Its computation relies
on an adaptive gain system that depends on a hypothetical
number of gain levels. All calculations were performed
using the MESD-toolbox implemented in Python [18],
which processes classification window results and returns
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an estimate for the duration of a hypothetical attention
switch.

4.3 Training process

In linear decoders, time-lag matrices were computed by
fixing the time-lag value to L = 26 in LSR, which left-
shifts the EEG signal by up to 400 ms. For CCA, we set
La = 80 for the encoder and L = 16 for the decoder, cor-
responding to a right-shift of the stimulus by up to 1.25 s
and a left-shift of the EEG by up to 250 ms. These time-
lag values were chosen based on previous studies [3,4]. To
determine the optimal number of components J for CCA,
we first trained a CCA model with min(La, L) compo-
nents and then optimized an LDA classifier via grid-search
over J (ranging from 1 to min(La, L)); the J yielding the
best validation performance was selected. Similarly, for
Ridge regression, a grid-search was performed for the reg-
ularization parameter λ over the range 10−7 to 107. Both
linear models were implemented using the scikit learn li-
brary, specifically cross decomposition.CCA and
linear model.Ridge functions.

For non-linear models, the optimization objective was
to minimize the negative correlation coefficient. The
Adam optimizer was employed and models were trained
for up to 200 epochs with early stopping after 5 epochs
without improvement in validation loss. A hyperparame-
ter search was conducted for the VLAAI and Conformer
models, as they were originally designed for different
tasks and datasets. All deep learning models were imple-
mented in PyTorch using an NVIDIA A600 GPU.

Two training strategies were adopted to obtain the
best subject-specific model. For non-linear models, we
compared performance when training the model from
scratch (see SS in 4.1) versus fine-tuning a pre-trained
baseline model (see population in 4.1), where the final
classification layers were adapted to subject-specific data
while the rest of the model remained with the same param-
eters. A parametric paired test with Bonferroni correction
was used for the statistical analysis.

5. RESULTS

5.1 Hyper-parameter search

To ensure a fair comparison among the reviewed models,
we performed a hyperparameter search for all models ex-
cept the CNN, which was already optimized in [8] for the
dataset used.

Figure 2. Linear models parameter distribution: a)
Ridge regression λ values b) CCA J values

Fig. 2 a) illustrates the λ values for the Ridge regres-
sion model during subject-specific validation, selected
based on validation loss. Most models yielded high regu-
larization values that penalize large weights.

Fig. 2 b) displays the optimal J values for the CCA
models under subject-specific validation. Typically, the
best J values involve seven or fewer components, indicat-
ing that additional components are unnecessary.

For the non-linear models originally trained on dif-
ferent datasets, we conducted a hyperparameter search
on the VLAAI and Conformer models. Tab. 1 summa-
rizes the differences in model sizes and validation perfor-
mance, with results averaged across folds. Note that the
window sizes differ: the VLAAI model was trained on 5-
second windows, while the Conformer and CNN models
predicted 2-second windows on the training stage.

Table 1. Model sizes and validation results for non-
linear models

Model Size Loss (ρ) Accuracy (%)

CNN [8] 9.65K 0.150 61.32

VLAAI [7] 1.71M 0.058 56.40
VLAAI (enhanced) 1.71M 0.069 57.08

Conformer [9] (adapted) 241K 0.139 60.34
Conformer (enhanced) 508K 0.144 60.62

5.2 Subject-finetuning (SF)

Each population model was fine-tuned with subject-
specific data to compare two training methodologies:
subject-specific versus subject-fine-tuned (see Section
4.3). As shown in Fig. 3, except for VLAAI, fine-
tuning did not improve validation accuracy, with Con-
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former and CNN models showing no significant differ-
ences between the two strategies. Therefore, we will use
subject-specific validation for these models. In contrast,
the VLAAI model exhibited a significant improvement
with fine-tuning (p < 0.01), consistent with [7]. Hence,
this strategy will be applied to VLAAI in the subsequent
evaluation.

Figure 3. Subject specific and subject finetuned
comparison based on the validation accuracy. Sta-
tistical analysis: n.s. : p > 0.01; s. : p < 0.01

5.3 Subject-specific (SS) and Subject-independent
(SI)

Fig. 4 a) presents the subject-specific evaluation results,
comparing accuracies across different window lengths and
corresponding inter-model MESD values. The CNN and
Conformer models achieve the best median MESD values,
at 16.7 and 17.4 respectively. Although the CCA model
appears to perform better for long windows, for short de-
cision windows (1–2 seconds) the CNN and Conformer
models outperform the others, thereby significantly influ-
encing the overall MESD. Conversely, for long windows
the CCA model performs better, reaching 92.2% at 50s,
also producing fewer MESD outliers. The Ridge regres-
sion model performed substantially worse in both MESD
and accuracy, while the VLAAI model performed close to
the singnificance level, indicating its unsuitability for this
dataset.

The results for subject-independent methodology,
which renders the system ready for use (see Section
4.1), are illustrated in Fig. 4 b). As expected, subject-
independent models performed significantly worse than
subject-specific ones; the VLAAI model was excluded
since it did not exceed the significance level. Neverthe-
less, the remaining models achieved above-chance, and

even acceptable accuracies with long decision windows.
The CCA model attained the best performance for long
windows, reaching an accuracy of 83.6% on a 50-second
window, whereas the CNN model—excelling in short de-
cision windows—delivered the best MESD at 33.3 sec-
onds. These findings indicate that the models can general-
ize across subjects when subject-specific data is unavail-
able.

6. DISCUSSION

6.1 Linear vs. non-linear models

Results in Section 5.3 show that the best linear model
(CCA) and the CNN performed similarly in terms of
MESD. However, these models differ in accuracy across
different window lengths, highlighting the MESD metrics
sensitivity to short-time windows. We attribute the supe-
rior performance of these models to two factors. First,
CCA leverages both stimulus and EEG information to
capture relevant variance from each domain [12]. Sec-
ond, the performance of the CNN and Conformer nonlin-
ear models can be attributed to their ability to adapt to a
relatively small dataset, such as the DTU dataset.

In many machine learning applications, the trend is to
develop larger, more complex models trained on extensive
datasets. Following this approach, a non-linear model that
integrates both stimulus and EEG signals could potentially
yield even better performance. Nonetheless, when select-
ing an algorithm for AAD, linear models offer clear ad-
vantages: they provide lightweight solutions and simpler,
more interpretable pipelines. In many cases, these char-
acteristics may be prioritized over marginal gains in final
performance.

6.2 Non-linear models prediction

In Section 5.2, the only model that benefited from subject
fine-tuning was VLAAI. However, this model exhibited
the poorest overall performance, in contrast to [7]. We
attribute this discrepancy primarily to the window predic-
tion paradigm, as other linear models predicting the ongo-
ing sample performed much better. Furthermore, the DTU
dataset [14] differed substantially in both experimental de-
sign and size from that in [7], which further explains the
under-performance of VLAAI in Section 5.3. In contrast,
the CNN and Conformer nonlinear models adequately fit
the dataset, achieving the best results in terms of MESD
and accuracy for small window sizes. When comparing
these two models, despite expectations regarding model
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Figure 4. a) Subject-specific (SS) model comparison, b) Subject-independent (SI) model comparison.

size and complexity, empirical results indicate that the
CNN outperformed the Conformer model. This results
suggest that a depth-wise block is sufficient to learn from
EEG signals, rather than relying on a self-attention layer.

6.3 AAD feasibility and actual constraints

The reviewed models demonstrated robust performance
for the AAD paradigm. However, when implementing
an AAD system in real-life scenarios, several constraints
must be considered. First, all algorithms rely on access to
clean envelopes, which requires an effective speech sep-
aration algorithm. Second, the data in this study were
recorded using a wet 64-electrode EEG system in a con-
trolled environment, a setting that does not reflect real-
world conditions. Another critical factor is the computa-
tional cost and real-time feasibility, both aspects not ad-
dressed by the pipelines developed in this work.

Ultimately, accurately measuring attention remains
challenging. In experimental settings, attention is typi-
cally inferred from participant’s responses to a series of

questions after completing the trials. However, in real-
world situations, attention fluctuates dynamically and can-
not be directly measured, making it fundamentally differ-
ent from controlled experimental assessments. Thus, fu-
ture studies must search for an adequate trade-off between
window length and accuracy and incorporate an adaptive
gain system that allows users to switch attention.

Although significant progress has been made to over-
come these issues [5, 6], further research is essential to
transform neuro-steered hearing aids into a practical solu-
tion.

7. CONCLUSION

In this study, different linear and non-linear auditory-
attention decoding (AAD) models were presented and
evaluated using the same dataset. All models were ad-
justed to the dataset through a hyperparameter search to
obtain the optimal configuration. For non-linear mod-
els, a subject fine-tuning training strategy was considered.
The CNN model of [8], performed the best on short de-
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cision windows achieving the lowest MESD on both SS
and SI models by predicting the ongoing sample of the
introduced context. Nevertheless, the CCA linear model
achieved higher accuracies on long decision windows and
similar MESD results, offering a simpler and more inter-
pretable alternative to non-linear models. In conclusion,
this work provides a fair comparison between different
AAD algorithms using the same dataset and may serve
as a basis for future studies evaluating alternative AAD
approaches. It also contributes to further research by link-
ing brain activity with auditory stimuli, thereby providing
useful insights for neuro-steered hearing aids and hearing-
related medical diagnoses.
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