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ABSTRACT

The NEMO initiative works towards agreeing on one
set of head-related transfer functions (HRTFs) for use
across various applications whenever incorporating in-
dividual(ized) HRTFs is not feasible. This initiative is
grounded on the assumption that listeners benefit from
adapting to a set of HRTFs that is different from their
own. Naturally, one key step in this process is the selec-
tion of the particular set. We hypothesize that the available
information in the set influences adaptation speed and/or
post-adaptation localization performance and, therefore,
is a potential factor in the selection. To test this hypoth-
esis, it is essential to develop measures that quantify the
information of an HRTF set. To this end, this contribution
presents several potential measures of information content
and compares them using multiple HRTF sets.

1. INTRODUCTION

Human listeners have the ability to adapt to a set of
head-related transfer-functions (HRTFs) that is dif-
ferent from their own, see [1] for a review. The re-
cently introduced NEMO initiative tries to leverage
this finding by proposing a default set of HRTFs,
which could be used across applications whenever
adopting individual(ized) HRTFs is not feasible [2].
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Naturally, selecting a particular set is a critical step
in developing this initiative, for which several con-
siderations need to be made. Some of them are of a
practical nature, such as usability for developers and
flexibility with regard to the available spatial grids
and formats. Apart from these, however, it is desir-
able to select a set to which people can adapt the best,
which could be measured by, e.g., speed of adapta-
tion and/or post-adaptation localization performance.
Determining what makes a set of HRTF adaptable in
this sense requires new scientific insight.

We hypothesize that adaptability depends on the
information contained in the HRTF set, and adapta-
tion studies are being planned to determine whether
this is the case. A natural prerequisite for such stud-
ies, however, is a measure that quantifies the infor-
mation contained in a set of HRTFs. When first in-
troducing the question of adaptability, we presented a
simple, ad-hoc measure termed discriminability [2].

In this contribution, we compare the discrim-
inability against two other possible measures. The
first one is the spectral entropy, which is directly re-
lated to the effective rank of the HRTF matrix, in-
troduced in [3]. The second measure is the infor-
mation gain (or, equivalently, mutual information),
which recently has been used to study how choos-
ing different feature sets influences the information
within one set of HRTFs [4]. The information gain
arises naturally in a Bayesian inference view on hu-
man sound localization, which is currently becoming
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more common [5-9]. While the effective rank acts
directly on the HRTF data, the discriminability and
the information gain can be computed from the re-
sults of different auditory models of sound localiza-
tion from the auditory modeling toolbox [10]. For the
discriminability, we use baumgartner2014 [11],
as in [2]. For the information gain, we also included
barumer1i2023 [7]. As the magnitude of the in-
formation gain values depends on the model parame-
ters, we also studied their influence on the outcome.

In the next section, we introduce the measures we
compare in detail. In Section 3 we show computa-
tional results for the HUTUBS set of HRTFs. Then,
in Section 4 we compare the results and show rela-
tions between the measures, including an analysis of
how the selection of the model parameters affect the
results.

2. MEASURES

In the following section, we present three measures
for quantifying information in a set of HRTFs: dis-
criminability [2], spectral entropy, which is directly
related to the effective rank [3], and information gain

[4].

2.1 Discriminability

In [2], we proposed to find the most informative
HRTF using a measure that was computed based on
localization predictions of an auditory model. To de-
fine the measure, we denote the HRTF of one subject
p from one direction 8; Vi € [1, 1] as h,(0;) € C?F,
where F' is the number of frequency bins. Therefore,
the response of the left and the right ear are stacked
underneath each other. A complete set with I di-
rections can then be represented as a matrix H,, €
C2FxI

We then defined the discriminability for one sub-
ject’s HRTFs H,, as the average variance of the
model predictions given a set of [ directions as

I
1 R
7 > Var{p(6|H,,6;)},

i=1

ey
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where 0 is the predicted, perceived direction. The
term p(@| H , 8;) can be understood as the probabil-
ity of localizing the sound at 0, given a source at 8;
and the specific set of HRTFs H,. The perceived di-
rection, 6, technically is continuous, but in practice,
a grid of J possible answers éj is assumed, making
p a probability mass function. In Bayesian terms,
p(O|H p, 0;) is called the posterior.

For the data presented, we used directions 8;
in the median plane and the baumgartner2014
model proposed in [12] to obtain the posterior.
This is obtained by setting both template and target
HRTFs to H,,.

The intuition behind this choice was that a wide
posterior means less specific localizability. We then
assumed that since template and target are set to the
same set, a wide posterior can only originate from
less useful information content of that particular set.
The measure was computed for simulated HRTFs
from the HUTUBS database [13] and the most infor-
mative set of HRTFs was determined, but no further
connection to information theory was given, and the
measure was not related to other measures from the
literature.

2.2 Effective Rank

One of the few measures of HRTF information con-
tent proposed in previous literature is the effective
rank of the HRTF matrix [3]. The effective rank is
based on the singular values of the HRTF matrix of
each participant, H . It is defined as

Q
R(H,) = exp (— Z a2 log 52) , (2)
n=1

where

2
On

Q
> ket GI%

are the normalized singular values of H . Interest-
ingly, the argument of the exponential function in
Eq. (2) is the (Shannon) entropy of the normalized

_2
O'n—

3)
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singular values, which is then also called the spectral
entropy (SE)

Q
SE=-) o2logar. (4)
n=1
This already reminds of information theoretical mea-
sures. Note that this measure only depends on the
HRTF data, not on any model of human localization.
A detailed derivation of the effective rank from ran-
dom processes is given in [14]. For comparison be-
low, we use SE with a logarithm of base 2, as the
result can then be interpreted as having the unit bits.

2.3 Information Gain

While the structure of the SE already hints at deeper
roots in information theory, it is not derived from
principled assumptions about human perception and
cognition. To this end, the so-called information gain
(IG) offers more insights. The term is used synony-
mously with the term “mutual information” [4]. We
prefer the term information gain, as the measure lit-
erally quantifies how much directional information a
subject can gain from listening to sound sources. So
far, the quantity has been used for comparing how
much information about a sound source location is
gained from various sets of auditory cues [4]. In gen-
eral, it is defined as

IG = H(6) — H(6|z), 5)

which is the difference between the entropy of the
prior distribution p(@), modeling the internal beliefs
about where sound sources are located if no acoustic

input were given,

J
H(0) =~ p(6;)log,p(6;), (6
j=1
and the conditional entropy
A~ J ~ ~
H(B|z) = = p(8j|x)logy p(Bjlz)  (7)
j=1
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of the posterior distribution p(8|) of the perceived
source locations given the specific acoustic signal at
the two ears € C2F. If the logarithm with base 2
is used, the result has the unit of bits. Estimates of
the posterior can be obtained from various auditory
models, such as the Bayesian models presented in [5]
and [15].

While Eq. (5) captures the general concept of the
information gain for any acoustic input &, we need to
specify the choices for the IG computed for compar-
ing sets of HRTFs more precisely. We assume local-
ization of a single sound source, where the signal is
simply an impulse, i.e., the HRTF itself, x = h,(0;).
Moreover, we are interested in the information gain
not for one source direction 6;, but would like to in-
clude an entire distribution of source directions. This
turns the information gain into the conditional infor-
mation gain, which can be expressed as

1G, = 3" p(8:) (H(816:) — H(B|H,(6,).)))
®)

where p(0;) is the distribution over the tested di-
rections. The result should reflect the information
gain that a particular listener obtains from listening
to sound sources from all directions, rather than sim-
ply picking directions based on previous knowledge,
i.e., without any recent listening.

Note that p(6) and p(@) are two different prior
distributions. The former is the distribution of tested
directions, which could be chosen based on a likely
distribution of source directions encountered in the
real world. On the other hand, p(8) is the prior dis-
tribution of the perceived sound source direction, i.e.,
the distribution of direction that a listener would pick
without any acoustic information. Setting p(6) and
p(0) to the same distribution implies that, without
meaningful acoustic information, perceived localiza-
tion follows the prior distribution of sounds occur-
ring in the world. This represents a reasonable as-
sumption. However, as we have no reliable data on
such a distribution, we use a uniform distribution for

both, giving equal weight to all directions.
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3. EXPERIMENTS

The measures are computed for the simulated HRTFs
of 96 participants contained in the HUTUBS dataset
[13]. D is computed as in [2]. SE was com-
puted after re-sampling the measurement grid to a
quasi-uniform grid of 1300 points following a t-
design. IG was computed for two models, result-
ing in IGarum for barumer112023 and IGpaym
for baumgartner2014. For IGparum, the same t-
design was used as for the SE.

As the absolute values of the model-based mea-
sures depend on model parameters, different choices
are studied for each of the models, before comparing
the measures with each other using default parame-
ters.

3.1 Discriminability

We computed the discriminability per set of HRTFs
D by treating the probability mass vector obtained
from baumgartner2024 as posterior. The model
has three fitted parameters: the degree of selectiv-
ity I', the listener sensitivity S and the sensorimotor
scatter €. In our experiments, the latter was set to
€ = 0; this parameter was motivated by perception-
to-pointing misalignments, which can be excluded
when comparing sets of HRTFs.

The other two parameters have an influence on
the discriminability which is shown in Fig. 1. It de-
creases as a function of S and increases as a function
of I', which is expected from the parameter definition
in [12] (note that lower S represents higher sensitiv-
ity). This implies that the discriminability increases
for more sensitive and more selective parameteriza-
tions. These parameters are tuned either at group or
subject level [12, 16] based on a specific localization
task.

Importantly, Fig. 1 shows that the order between
subjects (gray lines) is mostly maintained when vary-
ing the parameters, meaning that HRTFs can still be
compared without dedicated tuning of the parame-
ters. Since it is not obvious which parameters to use,
they were set to the default values in [12], which are
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Figure 1: Influence of the parameters S and I' from
baumgartner2014 on the Discriminability. Each
gray line represents an individual subject from the
database. The black lines represents the median over
subjects.

I'=6dB 'andS=1.

3.2 Spectral Entropy

As mentioned before, the effective rank, and equiv-
alently, the spectral entropy, does not depend on any
model of human perception. It is merely a prop-
erty of the HRTF matrix. Therefore, it does not
depend on any model parameters either. Comput-
ing the spectral entropy resulted in values between
SE™" = 3.52 bits and SE™" = 4.28 bits, with a
median of SE™°4™ = 3.97 bits.
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3.3 Information gain

As with D, IG is computed after obtaining the pos-
terior using auditory models. First, the IG was com-
puted for baumgartner2014 using the default pa-
rameterization of I and S (e = 0, see the justification
in Section 3.1). The results of computing the IG were

relatively low (IGEedian = 0.39 bits, IGEI® = =0.17
bits, IGE™X = 0.67 bits).

Figure 2 (a) and (b) show the effect of varying I'
while S is fixed and vice versa. The plots show that
the absolute value of IG varies substantially depend-
ing on the specific parameters, by up to 3 bits. As
with D, IG increases with higher sensitivity (lower
S) and higher degree of selectivity (higher I'). Again,
the parameters seem to have a similar effect on all lis-
teners, and they are not expected to have a significant
impact on the correlation between different metrics
if the same parameters are used for all sets of HRTFs
included.

The IG was also computed after obtaining the
posteriors returned by barumer1i2023. They
were computed using the default parameterization
(oita = 0.569, 059 = 1, omon = 1.25) and using
a uniform prior distribution. In this model, the motor
noise does not affect the posterior distribution and is
used to add noise to the posterior-to-response map-
ping. To speed up the processing time, the number
of repetitions of the experiment was set to only two.
Systematic differences are discovered regardless.

The results with the default parameterization was
[Gedian — 7 90 bits, IGHR = 6.81 bits, IGEaX
= 7.49 bits. Varying one parameter while fixing the
rest using only two runs of the model for speed shows
that, as expected, increasing the noise for localiza-
tion cues (0itd, Tild> Omon) decreased the IG, having
O0mon the largest impact, see Figure 2 (c), (d), (e) and
(f). Moreover, the effect of varying the prior distribu-
tion was analyzed. The results show that informative
priors (low oprior) decrease the IG that acoustic cues
provide. This was also expected since the higher the
Oprior» the less informative the prior is and therefore
the higher the IG is from an acoustic observation.
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3.4 Comparison of evaluated metrics

Comparison of the results is shown in Fig. 3. The
diagonal line shows the histogram of the four metrics
over the dataset. Correlating the metrics, it becomes
clear that the largest correlation of > 0.99 is found
between D and IGg,um. Also, IGgaum and IGgarum
correlate with a correlation coefficient of 0.64. SE
does not correlate strongly with either of the other
measures.

4. DISCUSSION

After computing the various measures, we now dis-
cuss the possible meaning of their magnitude and
explain why discriminability and information gain
for the baumgartner2014 model correlate so
strongly.

4.1 Magnitude of Information Content

Analyzing the magnitude of the outcomes, the
most relevant result is the IG obtained for the
barumerli2014 model, which considers human
perception and takes into account the complete
sphere. There, the median information gain using
default parameters is approximately 7.2 bits. One
way of interpreting this result is that, assuming sound
sources are equally likely from all directions, a hu-
man could perfectly distinguish 272 ~ 147 direc-
tions through listening. However, as we have shown,
the absolute values strongly depend on the choice of
parameters. Especially, reducing the monaural fea-
tures noise oo, can easily increase the IG. Accord-
ingly, if the absolute value is of interest, the model
parameters first need to be fitted by means of per-
ceptual data. Such fitted parameters would therefore
provide meaningful insights about the information
contained in the set of HRTFs.

The spectral entropy also takes the HRTFs on the
entire sphere and does not have parameters. Here,
the absolute number of bits was considerably lower
than for IGpaum- The spectral entropy only consid-
ers how much information is needed after compress-
ing the HRTF matrix through linear operations. This
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Figure 2: Influence of the model parameters S and I' from baumgartner2014 and oprior, Titd, Oild and
Omon from barumer1i2023 on the IG. Each gray line represents an individual subject from the database.

The black lines represents the median over subjects.

is far from what is thought to happen in human sound
localization.

The IG results for baumgartner2014 with
default parameters were below 1 bit for many pa-
rameter choices. Partly, this is explained by the
model only considering positions in the median
plane. However, intuitively, this result means that the
listener would only be able to reliably tell apart less
than two directions, which is lower than expected;
when humans localize sound with their own HRTEF,
at least four quadrants are usually resolved. One pos-
sible cause might be parameterization. Choosing dif-
ferent parameters increased IGpaum to up to 3 bits,
which would allow listeners to distinguish eight di-
rections in the median plane perfectly.
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4.2 Discriminability vs. Information Gain

As described above, D and IGpayy, are highly cor-
related. This can easily be explained by the fact
that they are both based on the same posterior dis-
tribution. For certain distributions, there is a direct
relationship between variance and entropy. For ex-
ample, if the posterior were a Gaussian distribution,
there would be a direct relationship between variance
and entropy, i.e., H(X) = %logy(2mec?). Thus, if
the variance is low, the conditional entropy is also
low, resulting in the IG in Eq. (5) to be high. While
the exact law describing the relationship depends on
the distribution, the high correlation between D and
IGBaum is therefore expected. Altogether, this shows
that the ad-hoc metric introduced in [2] finds nearly
the same differences as the information gain measure
derived from more principled assumptions.
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Figure 3: Correlation plot of the results. The diagonal shows histograms of the four measures, the scatter plots

show correlations between them.

S. CONCLUSION

This paper compared three measures for quantify-
ing the information contained in sets of HRTFs. We
showed one model-independent measure, the spec-
tral entropy, and two measures that are based on
posterior distributions obtained from auditory mod-
els: the ad-hoc discriminability measure proposed
in [2] and the information gain. We demonstrated
that the magnitude of the results obtained from
the model-based measures strongly depends on the
model parameters, but that comparisons between sets
of HRTFs are largely unaffected by the parameters.

We showed that when using the same model, dis-
criminability and information gain are directly re-
lated. The spectral entropy did not correlate with

3411

either of the other two metrics. Since the informa-
tion gain is well grounded in information theory and
a Bayesian theory of localization, we propose to use
it for selecting sets of HRTFs for a future adapta-
tion study, in which it shall be assessed whether par-
ticipants better adapt to informative non-individual
HRTFs. However, as we have also pointed out, the
information gain is contingent upon a specific audi-
tory model, which must be carefully selected.
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