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ABSTRACT* 

The increasing prevalence of Unmanned Aircraft Systems in 
urban environments necessitates a deeper understanding of 
their impact on the experience of urban soundscapes. This 
study presents Machine Learning models aimed at predicting 
perceived annoyance of UAS noise. Deep learning models 
were generated using convolutional recurrent neural 
networks, trained on a dataset incorporating data from 
multiple listening experiment. The model predictions are 
compared with various existing nonlinear models for 
Psychoacoustic Annoyance. Our expanded dataset includes 
recent field studies across England and Greece, enhancing 
the robustness and generalisability of our models. The 
broader aim of this research is development of a 
comprehensive soundscape model for UAS noise, which 
could be incorporated into future 'next generation' smart 
sound level meters and be used to inform urban planning 
decisions.   

Keywords: Artificial Intelligence, Machine Listening, 
Psychoacoustic Annoyance, Soundscape, UAS 

1. INTRODUCTION 

Noise signatures from emergent technologies in both civil 
and commercial domains have prompted growing concern 
regarding their acoustic impact on the perception of urban 
soundscapes. As frameworks develop for UAS, commonly 
referred to as drones, to integrate into transport 
infrastructure, small drones are already employed in 
agriculture for crop sowing, health monitoring, and logistics 
for both NHS and Royal Mail deliveries. These drones elicit 
complex perceptual responses by introducing novel, often 
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highly tonal noise signatures that deviate from broadband 
noise typical of road or rail transport. Conventional noise 
assessment methods – historically reliant on A-weighted 
scales – are insufficient in capturing these effects. 
 
Recent years have seen increased emphasis on applying the 
soundscape approach [1], acknowledging human perception 
of environmental sound is shaped not only by acoustic levels 
but also by context and emotional affect. This shift has 
encouraged the development of methods that predict 
perceived affect directly from audio features, whether 
through psychoacoustic modelling or data-driven 
approaches such as deep learning. However, while 
psychoacoustic metrics have been widely used in industrial 
noise prediction, their application to UAS noise, particularly 
in complex or multi-source sound environments, remains 
under investigation. 
 
Our previous work using convolutional neural networks 
(CNNs) to predict perceived annoyance ratings from mel-
spectrograms indicated that deep learning may offer 
enhanced predictive capabilities for UAS noise perceived 
annoyance [2]. This study introduces a new convolutional 
recurrent neural network (CRNN) architecture and three new 
soundwalk datasets (on top of the previous CNN model and 
5 datasets). The objective is to determine which model 
architectures best predict subjective UAS noise annoyance 
ratings. 

2. BACKGROUND 

2.1 Soundscapes and Contextual Perception 

The concept of soundscapes, introduced by R. M. Schafer 
[3], describes how sound interacts with environments and 
shapes human perception. ISO-12913 [1] formalised this 
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framework, defining soundscapes as "the acoustic 
environment as perceived or experienced and/or understood 
by a person or people, in context”. A significant 
advancement in soundscape research is the Circumplex 
Model [4], which organises soundscapes along dimensions 
of pleasantness and eventfulness, varying combinations of 
which can yield soundscapes described as calm, exciting, 
monotonous, and chaotic. Despite these advances, the 
influence of auditory salience – the prominence of a sound 
object – remains understudied [5], particularly in relation to 
electric vehicles (EV’s) and UAVs. As next-generation 
technologies introduce novel noise sources, often containing 
high-frequency tonal components, their interaction with 
existing soundscapes can vary dramatically depending on 
listener expectations, use case, emotional factors and context 
[6].  
 

2.2 Psychoacoustic Modelling and Annoyance 
Frameworks 

Psychoacoustic annoyance refers to a modelled estimate 
derived from quantifiable sound quality metrics such as 
loudness, sharpness, fluctuation strength, and tonality. In 
contrast, perceived annoyance (PA) is a subjective 
judgement made by listeners, typically gathered through 
listening tests, and reflects the complex interplay of acoustic, 
contextual, and individual factors not fully captured by 
existing models. Widmann’s annoyance model, originally 
developed for traditional noise sources [7], has required 
significant adaptations for UAS noise profiles. Di et al. [8] 
enhanced the model by integrating tonality penalties that 
account for an additional 0.5 – 1.5 units of annoyance 
depending on tonal strength and frequency, and an adjusted 
sharpness rating that is approximately 20% higher than ISO 
and DIN standards [9]. This adaptation improved prediction 
accuracy with a reduction in Root Mean Squared Error 
(RMSE) from 1.27 to 0.89, though limitations remain when 
analysing complex environments with non-tonal noise 
characteristics. Ramos-Romero et al. (2024) [10] developed 
a comprehensive taxonomy for assessing UAS noise, 
examining relationships between design parameters, 
operational conditions, and psychoacoustic metrics. Their 
measurements revealed that multirotor UAS produced noise 
with higher sharpness and tonal components compared to 
fixed-wing designs. UAS noise typically ranges between 500 
Hz – 5 kHz, with tonal peaks in the 1 kHz – 2 kHz range 
contributing significantly to perceived annoyance. 
Contextual variations were notable, with sharpness levels 
measuring 1.9 acums in urban settings versus 1.5 acums in 
rural areas. Lotinga et al. (2023) [11] investigated 

psychoacoustic metrics for potential integration into UAS 
noise regulations. Smaller UAVs (e.g. DJI Matrice 300) 
exhibited higher levels of sharpness and roughness, while 
larger aircraft produced greater tonal fluctuation strength. 
Tonal components between 200 Hz – 800 Hz were found to 
significantly increase annoyance, with sharpness levels 
exceeding 1.5 acum, correlating with a 25% increase in 
reported annoyance even when overall sound levels 
remained constant. Subsequent research from Lotinga [12] 
found that the adapted Torija et al. [13] PA model 
demonstrated superior performance to Widmann, More [14] 
and Di et al. The Sottek Hearing Model [15] offers an 
advanced framework that simulates human auditory 
perception by modeling the basilar membrane's response to 
sound. This physiological approach accounts for nonlinear 
auditory filtering and is particularly effective for analysing 
drone noise in varying flight conditions, due to its increased 
precision in quantifying slow amplitude modulation. While 
psychoacoustic annoyance models offer interpretable 
predictions based on engineered features, they are limited by 
their reliance on fixed-weight formulations and assumptions 
derived from traditional noise sources. These models often 
fail to account for contextual variation, spectral complexity, 
and perceptual non-linearity present in UAV noise. A deep 
learning approach could learn context-sensitive acoustic 
representations directly from data, across varying 
environments and sound source types, perhaps resulting in 
more accurate predictions. 

2.3 Deep Learning Models for Noise Analysis 
and Prediction 

Green and Torija [2] demonstrated that CNNs, an 
architecture ideal for processing gridlike data such as audio 
spectrograms, achieves 85% accuracy in predicting 
perceived annoyance from UAV noise using mel-
spectrograms, substantially outperforming traditional 
regression models that reach only 70% accuracy. The 
optimal time-frequency resolution parameters were found to 
be a Fast Fourier-Transform (FFT) length of 256 and hop 
length of 64 samples, yielding a Mean Absolute Error 
(MAE) of 0.58 and an R² value of 0.72. This performance 
exceeded traditional PA metrics that predominantly 
emphasise loudness, suggesting CNNs can identify 
additional perceptually relevant features such as fluctuation 
strength and roughness. However, challenges remain in 
generalising these models across varied environments and 
UAS types due to differences in noise profiles based on 
altitude, speed, and environmental conditions. For sequential 
audio analysis, Recurrent Neural Networks (RNNs) have 
proven effective in capturing temporal patterns. Grekow’s 
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research on music emotion recognition demonstrated RNNs 
achieving 83% accuracy in predicting emotional responses 
along arousal and valence dimensions [16], analogous to the 
affective eventfulness and pleasantness dimensions specified 
in ISO 12913. The model showed stronger performance in 
predicting arousal (correlation coefficient of 0.72) than 
valence (correlation coefficient of 0.55), using features 
including tempo, loudness, pitch, and timbre across a dataset 
of 5,000 music tracks. Addressing the complexity of 
polyphonic soundscapes, Çakır et al. [17] proposed a CRNN 
utilising convolutional layers to extract spectral features 
while recurrent layers model temporal dependencies. This 
resulted in a 10 – 15% improvement in F1 scores compared 
to standard CNN and RNN models when applied to 
overlapping urban sounds. This architecture is particularly 
suitable for UAV noise detection within complex 
soundscapes, though computational demands may challenge 
realtime deployment. Casabianca and Zhang [18] introduced 
a late fusion ensemble approach for acoustic UAV detection, 
combining multiple deep neural networks through both hard 
and weighted soft voting strategies. Their ensemble, 
comprising CNNs trained on mel-spectrograms, achieved up 
to 94.7% accuracy on unseen augmented datasets, 
significantly outperforming individual models. The study 
also highlighted the role of data augmentation in improving 
scalability across drone types and recording conditions. 

3. METHODS 

3.1 Datasets 

This study retains the five datasets introduced in Green and 
Torija [2], comprising a total of 587 audio clips with 
associated annoyance ratings. These were recorded across 
various controlled listening studies involving both 
conventional and UAV aircraft, with annotations collected 
using continuous ratings (KTH dataset) rescaled to match. 
To extend the data and explore the applicability of existing 
models, in this work, three new datasets are introduced, 
collected in: (i) Crescent Meadow, Salford, UK (23 clips) 
(Green and Torija, 2024) [19]; (ii) Athens, Greece (56 clips) 
(Green et al., 2025) [20];  (iii) the Isles of Scilly, UK (27 
clips) (Green and Torija, 2025) [21], amounting to an 
increased total of 693 clips. These datasets are distinct from 

————————— 
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those included in the previous study in that they were 
collected in field-based soundwalk studies, rather than in a 
lab-based setting. Participants were exposed to take-off, 
flyover, and landing UAS maneuvers, conducted at a range 
of altitudes, and responses were gathered along soundscape 
dimensions specified in ISO 12913-2, as well as annoyance 
based on ISO 15666 [22]. The latter were used as target 
ratings in the present study. Baseline annoyance ratings were 
gathered from soundwalk locations prior to the 
commencement of drone operations, and the average 
annoyance of all respondents at each stop/location were 
assigned to audio clip names from all eight datasets. Audio 
recordings were made at each stop using the Zoom H3VR 
portable Ambisonic recorder1, with the omnidirectional 
channel used to derive monaural stimuli for the present study. 
These soundwalks were conducted as part of a series with the 
specific aim of investigating the perception of UAS noise 
introduced within a variety of existing environmental 
contexts, including a busy city street, quieter park and 
meadow, and a remote rural island. The extracted clips 
include both ambience and UAS noise. In line with the 
original methodology, all audio clips were resampled and 
trimmed to the loudest six-second segment based on total 
spectrogram amplitude. Mel-spectrograms were then 
generated for each clip up to a frequency  of 8 kHz, 
represented by 96 mel-spaced bins with a total dynamic 
range of 60 dB. 
 

 
Dataset Participants Clips Response Type 

MJL 42 80 Single 

NG23 41 71 Single 
NG22 30 51 Single 

RN 50 120 Single 

AJ 25 9 Continuous 

Meadow  16 24 Single 
Scilly  22 27 Single 

Athens  110 56 Single 

Table 1. Summary of included datasets 
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3.2 Psychoacoustic Annoyance Models 

Sound quality metrics required for Widmann’s 
psychoacoustic annoyance model were derived from the raw 
audio files using the SQAT library in MATLAB [19]. 
Pearsons R was used to quantify correlations between the 
Mean Perceived Annoyance’s (MPA) and the sound quality 
metrics. Scatter plots showing correlations between 
perceived and psychoacoustic annoyance, as well as those 
with individual SQMs, are shown in Figure 1. 

3.3 Deep Learning Models 

Two deep neural network architectures were developed to 
predict perceived annoyance directly from audio 
spectrograms: a CNN and a CRNN. Similarly to the previous 
study [2], input spectrograms were generated using the 
torchaudio library [20], with particular attention to time-
frequency resolution parameters which were previously 
found to significantly impact model performance. The CNN 
architecture consists of two convolutional layers with 3×3 
kernels outputting 96 and 32 channels respectively, each 
followed by 2×8 max pooling and batch normalisation. 
These feed into three fully-connected layers of 1000, 100, 
and 1 output units with ReLU activation functions and 
dropout regularisation (p=0.2) between all layers except the 
final output. The CRNN extends this architecture by 
incorporating recurrent processing after the convolutional 
feature extraction. It utilises the same initial convolutional 
layers but then reshapes the output for sequential processing 
through two bidirectional LSTM layers with 128 and 64 
hidden units respectively. An attention mechanism focuses 
on the most relevant temporal features before passing 
through fully-connected layers of 512 and 128 units, then 
finally one single unit. The CRNN employs higher dropout 
(p=0.3) and gradient clipping at a maximum norm of 5.0 to 
stabilise training. Through systematic grid search of FFT 
lengths {512, 256, 128, 64} and hop lengths {256, 128, 64, 
32}. 

3.4 Training & Testing 

The models were implemented using PyTorch [21] and 
trained with MSE loss and Adam optimiser (learning rate 
1 × 10!" for CNN, 5 × 10!#	for CRNN). Early stopping 
with 40 epochs patience prevented overfitting across a 
maximum of 200 epochs with batch size 16. The dataset was 
randomly split into training (75%, n=520), validation (13%, 
n=91), and test (12%, n=83) sets, with shuffling to ensure 
even distribution across data sources. Performance was 
evaluated using MAE and coefficient of determination (R²). 

Regularisation techniques included weight decay (1 ×
10!$) and gradient clipping at a maximum norm of 5.0 to 
prevent overfitting and stabilise training. Computation time 
per epoch ranged from 70 to 120 seconds, with training 
conducted on a Mac Mini M2 to utilise Metal Performance 
Shaders (MPS) backend for GPU training acceleration [22]. 
For comparison, two Support Vector Regression (SVR) 
baseline models were implemented: one with sigmoid kernel 
fitted directly to Widmann psychoacoustic annoyance 
values, and another with polynomial kernel (degree 3)  

Figure 1. Histograms of psychoacoustic features and 
correlations of these to perceived annoyance. 
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trained on the raw sound quality metrics. 

4. RESULTS AND DISCUSSION 

The SVR model trained on PA values using a sigmoid kernel 
achieved an MAE of 0.87 and an R² of 0.49, while the 
polynomial SVR trained on raw psychoacoustic features 
yielded a marginally better performance, with an MAE of 
0.77 and R² of 0.56. As seen in the previous study, this 
suggests that a model trained directly on the constituent 
features of PA can outperform the composite metric itself. 
The sigmoid curve fit, shown in Figure 2, follows a similar 
logistic shape to that reported in earlier work, with perceived 
annoyance values beginning to plateau at higher PA levels. 
A notable concentration of moderate-to-high annoyance 
ratings (7-10 range) was identified, predominantly 
originating from the Athens dataset. This clustering suggests 
potential contextual influences beyond the immediate 
acoustic stimuli. Qualitative observations during the 
soundwalk revealed localised environmental factors that 
may have significantly influenced participant responses. 
Specifically, the Athens dataset exhibited a marked tendency 
toward elevated annoyance ratings, potentially attributable to 
pre-existing environmental disturbances independent of the 
specific acoustic stimulus. Despite these potential outliers, 
the SVR model maintained robust predictive performance, 

demonstrating remarkable resilience to dataset 
heterogeneity. 
 
Table 2 shows that CNN models exhibited varied 
performance across different time-frequency resolutions. 
The optimal configuration was identified as an FFT length of 
512 samples and hop length of 64 samples, achieving MAE 
0.56 / R² 0.75. This configuration demonstrated a robust 
balance between spectral and temporal feature extraction. 
Configurations with shorter hop lengths (32 samples) 
consistently underperformed, with MAE values ranging 
from 0.85 to 0.87 and lower R² values. The 256 / 64 
configuration also showed strong performance, with MAE 
0.64 / R² 0.71. 
 
The CRNN models demonstrated superior performance 
compared to the CNN models. The 256 / 64 configuration 
in particular emerged as the standout, with an impressive 
MAE 0.49 / R² 0.86, indicating a significant improvement 
in predictive accuracy over the CNN. The recurrent 
architecture showed more consistent performance across 
different FFT and hop length configurations. The 512 / 64 
configuration also performed well, with MAE 0.55 / R² 
0.76. Configurations with 32-sample hop lengths showed 
decreased performance, with the 512 / 32 configuration 
achieving an R² of 0.78 but other configurations showing 
less consistent results. 
 

Figure 2. Fit of perceived annoyance to Widmann 
psychacoustic annoyance values by SVR model. 

Table 2. Results for each network architecture and 
frame/hop length combination. 

Frame / Hop  
CNN  CRNN  

MAE R² MAE R² 
512 / 256 0.77 0.55 0.65 0.66 
512 / 128 0.84 0.29 0.62 0.7 
512 / 64 0.56 0.75 0.55 0.76 
512 / 32 0.85 0.54 0.7 0.78 

256 / 128 0.76 0.62 0.56 0.81 
256 / 64 0.64 0.71 0.49 0.86 
256 / 32 0.87 0.39 0.83 0.46 
128 / 64 0.72 0.56 0.58 0.79 
128 / 32 0.81 0.46 0.71 0.63 
64 / 32 0.77 0.5 0.94 0.44 
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The lower MAE and higher R² values of the CRNN results 
suggest that the bidirectional LSTM layers and attention 
mechanism provide additional context for predicting 
perceived annoyance. All models achieved their best 
ratings with hop 64 and FFT 256 or 512, aligning with the 
previous hypothesis about capturing perceptually relevant 
acoustic fluctuations. This configuration provides a 4ms 
time resolution, potentially capturing psychoacoustic 
features analogous to roughness and temporal 
modulation. 
 

5. CONCLUSIONS AND FUTURE WORK 

Several promising avenues for future research emerge 
from this study. First, investigating transfer learning 
techniques could potentially enhance model 
generalisability. The incorporation of additional datasets 
from various acoustic environments might improve model 
robustness and predictive capabilities. Expanding the 
research to other sound sources beyond UAS could 
establish a more comprehensive framework for sound 
affect prediction. As tonal, high-frequency and synthetic 
novel noises from e-mobility proliferate into urban 
environments, it would be invaluable to expand on the 
current models to classify sounds in noise clips and apply 
weightings based on source type, detectability and 
intermittency to better measure more eventful 
soundscapes. Finally, exploring objective ratings of 
annoyance from psychoacoustic models from Di, More, 
Torija et al. and NASA, along with their relative metrics, 
could help better calculate both subjective target 
annoyances and objective annoyance-model based 
ratings. This could, in theory, lead to a framework for 
open-source sound libraries to become extremely useful 
and adaptable to noise annoyance prediction, 
classification, training and learning. 
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