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ABSTRACT

The increasing prevalence of Unmanned Aircraft Systems in
urban environments necessitates a deeper understanding of
their impact on the experience of urban soundscapes. This
study presents Machine Learning models aimed at predicting
perceived annoyance of UAS noise. Deep learning models
were generated using convolutional recurrent neural
networks, trained on a dataset incorporating data from
multiple listening experiment. The model predictions are
compared with various existing nonlinear models for
Psychoacoustic Annoyance. Our expanded dataset includes
recent field studies across England and Greece, enhancing
the robustness and generalisability of our models. The
broader aim of this research is development of a
comprehensive soundscape model for UAS noise, which
could be incorporated into future 'next generation' smart
sound level meters and be used to inform urban planning
decisions.

Keywords: Artificial Intelligence, Machine Listening,
Psychoacoustic Annoyance, Soundscape, UAS

1. INTRODUCTION

Noise signatures from emergent technologies in both civil
and commercial domains have prompted growing concermn
regarding their acoustic impact on the perception of urban
soundscapes. As frameworks develop for UAS, commonly
referred to as dromes, to integrate into transport
infrastructure, small drones are already employed in
agriculture for crop sowing, health monitoring, and logistics
for both NHS and Royal Mail deliveries. These drones elicit
complex perceptual responses by introducing novel, often
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highly tonal noise signatures that deviate from broadband
noise typical of road or rail transport. Conventional noise
assessment methods — historically reliant on A-weighted
scales — are insufficient in capturing these effects.

Recent years have seen increased emphasis on applying the
soundscape approach [1], acknowledging human perception
of environmental sound is shaped not only by acoustic levels
but also by context and emotional affect. This shift has
encouraged the development of methods that predict
perceived affect directly from audio features, whether
through  psychoacoustic modelling or data-driven
approaches such as deep learning. However, while
psychoacoustic metrics have been widely used in industrial
noise prediction, their application to UAS noise, particularly
in complex or multi-source sound environments, remains
under investigation.

Our previous work using convolutional neural networks
(CNNs) to predict perceived annoyance ratings from mel-
spectrograms indicated that deep learning may offer
enhanced predictive capabilities for UAS noise perceived
annoyance [2]. This study introduces a new convolutional
recurrent neural network (CRNN) architecture and three new
soundwalk datasets (on top of the previous CNN model and
5 datasets). The objective is to determine which model
architectures best predict subjective UAS noise annoyance
ratings.

2. BACKGROUND

2.1 Soundscapes and Contextual Perception

The concept of soundscapes, introduced by R. M. Schafer
[3], describes how sound interacts with environments and
shapes human perception. ISO-12913 [1] formalised this
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framework, defining soundscapes as "the acoustic
environment as perceived or experienced and/or understood
by a person or people, in context”. A significant
advancement in soundscape research is the Circumplex
Model [4], which organises soundscapes along dimensions
of pleasantness and eventfulness, varying combinations of
which can yield soundscapes described as calm, exciting,
monotonous, and chaotic. Despite these advances, the
influence of auditory salience — the prominence of a sound
object — remains understudied [5], particularly in relation to
electric vehicles (EV’s) and UAVs. As next-generation
technologies introduce novel noise sources, often containing
high-frequency tonal components, their interaction with
existing soundscapes can vary dramatically depending on
listener expectations, use case, emotional factors and context

[6].

2.2 Psychoacoustic Modelling and Annoyance
Frameworks

Psychoacoustic annoyance refers to a modelled estimate
derived from quantifiable sound quality metrics such as
loudness, sharpness, fluctuation strength, and tonality. In
contrast, perceived annoyance (PA) is a subjective
judgement made by listeners, typically gathered through
listening tests, and reflects the complex interplay of acoustic,
contextual, and individual factors not fully captured by
existing models. Widmann’s annoyance model, originally
developed for traditional noise sources [7], has required
significant adaptations for UAS noise profiles. Di ef al. [8]
enhanced the model by integrating tonality penalties that
account for an additional 0.5 — 1.5 units of annoyance
depending on tonal strength and frequency, and an adjusted
sharpness rating that is approximately 20% higher than ISO
and DIN standards [9]. This adaptation improved prediction
accuracy with a reduction in Root Mean Squared Error
(RMSE) from 1.27 to 0.89, though limitations remain when
analysing complex environments with non-tonal noise
characteristics. Ramos-Romero ef al. (2024) [10] developed
a comprehensive taxonomy for assessing UAS noise,
examining relationships between design parameters,
operational conditions, and psychoacoustic metrics. Their
measurements revealed that multirotor UAS produced noise
with higher sharpness and tonal components compared to
fixed-wing designs. UAS noise typically ranges between 500
Hz — 5 kHz, with tonal peaks in the 1 kHz — 2 kHz range
contributing  significantly to perceived annoyance.
Contextual variations were notable, with sharpness levels
measuring 1.9 acums in urban settings versus 1.5 acums in
rural areas. Lotinga et al (2023) [11] investigated
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psychoacoustic metrics for potential integration into UAS
noise regulations. Smaller UAVs (e.g. DJI Matrice 300)
exhibited higher levels of sharpness and roughness, while
larger aircraft produced greater tonal fluctuation strength.
Tonal components between 200 Hz — 800 Hz were found to
significantly increase annoyance, with sharpness levels
exceeding 1.5 acum, correlating with a 25% increase in
reported annoyance even when overall sound levels
remained constant. Subsequent research from Lotinga [12]
found that the adapted Torija et al. [13] PA model
demonstrated superior performance to Widmann, More [14]
and Di et al. The Sottek Hearing Model [15] offers an
advanced framework that simulates human auditory
perception by modeling the basilar membrane's response to
sound. This physiological approach accounts for nonlinear
auditory filtering and is particularly effective for analysing
drone noise in varying flight conditions, due to its increased
precision in quantifying slow amplitude modulation. While
psychoacoustic annoyance models offer interpretable
predictions based on engineered features, they are limited by
their reliance on fixed-weight formulations and assumptions
derived from traditional noise sources. These models often
fail to account for contextual variation, spectral complexity,
and perceptual non-linearity present in UAV noise. A deep
learning approach could learn context-sensitive acoustic
representations  directly from data, across varying
environments and sound source types, perhaps resulting in
more accurate predictions.

2.3 Deep Learning Models for Noise Analysis
and Prediction

Green and Torija [2] demonstrated that CNNs, an
architecture ideal for processing gridlike data such as audio
spectrograms, achieves 85% accuracy in predicting
perceived annoyance from UAV noise using mel-
spectrograms, substantially —outperforming traditional
regression models that reach only 70% accuracy. The
optimal time-frequency resolution parameters were found to
be a Fast Fourier-Transform (FFT) length of 256 and hop
length of 64 samples, yielding a Mean Absolute Error
(MAE) of 0.58 and an R? value of 0.72. This performance
exceeded traditional PA metrics that predominantly
emphasise loudness, suggesting CNNs can identify
additional perceptually relevant features such as fluctuation
strength and roughness. However, challenges remain in
generalising these models across varied environments and
UAS types due to differences in noise profiles based on
altitude, speed, and environmental conditions. For sequential
audio analysis, Recurrent Neural Networks (RNNs) have
proven effective in capturing temporal patterns. Grekow’s
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research on music emotion recognition demonstrated RNNs
achieving 83% accuracy in predicting emotional responses
along arousal and valence dimensions [16], analogous to the
affective eventfulness and pleasantness dimensions specified
in ISO 12913. The model showed stronger performance in
predicting arousal (correlation coefficient of 0.72) than
valence (correlation coefficient of 0.55), using features
including tempo, loudness, pitch, and timbre across a dataset
of 5,000 music tracks. Addressing the complexity of
polyphonic soundscapes, Cakir ef al. [17] proposed a CRNN
utilising convolutional layers to extract spectral features
while recurrent layers model temporal dependencies. This
resulted in a 10 — 15% improvement in F1 scores compared
to standard CNN and RNN models when applied to
overlapping urban sounds. This architecture is particularly
suitable for UAV noise detection within complex
soundscapes, though computational demands may challenge
realtime deployment. Casabianca and Zhang [18] introduced
a late fusion ensemble approach for acoustic UAV detection,
combining multiple deep neural networks through both hard
and weighted soft voting strategies. Their ensemble,
comprising CNNs trained on mel-spectrograms, achieved up
to 94.7% accuracy on unseen augmented datasets,
significantly outperforming individual models. The study
also highlighted the role of data augmentation in improving
scalability across drone types and recording conditions.

3. METHODS

3.1 Datasets

This study retains the five datasets introduced in Green and
Torija [2], comprising a total of 587 audio clips with
associated annoyance ratings. These were recorded across
various controlled listening studies involving both
conventional and UAYV aircraft, with annotations collected
using continuous ratings (KTH dataset) rescaled to match.
To extend the data and explore the applicability of existing
models, in this work, three new datasets are introduced,
collected in: (i) Crescent Meadow, Salford, UK (23 clips)
(Green and Torija, 2024) [19]; (ii) Athens, Greece (56 clips)
(Green et al., 2025) [20]; (iii) the Isles of Scilly, UK (27
clips) (Green and Torija, 2025) [21], amounting to an
increased total of 693 clips. These datasets are distinct from

! https://www.zoom-europe.com/en/handy-

recorders/zoom-h3-vr
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those included in the previous study in that they were
collected in field-based soundwalk studies, rather than in a
lab-based setting. Participants were exposed to take-off,
flyover, and landing UAS maneuvers, conducted at a range
of altitudes, and responses were gathered along soundscape
dimensions specified in ISO 12913-2, as well as annoyance
based on ISO 15666 [22]. The latter were used as target
ratings in the present study. Baseline annoyance ratings were
gathered from soundwalk locations prior to the
commencement of drone operations, and the average
annoyance of all respondents at each stop/location were
assigned to audio clip names from all eight datasets. Audio
recordings were made at each stop using the Zoom H3VR
portable Ambisonic recorder!, with the omnidirectional
channel used to derive monaural stimuli for the present study.
These soundwalks were conducted as part of a series with the
specific aim of investigating the perception of UAS noise
introduced within a variety of existing environmental
contexts, including a busy city street, quieter park and
meadow, and a remote rural island. The extracted clips
include both ambience and UAS noise. In line with the
original methodology, all audio clips were resampled and
trimmed to the loudest six-second segment based on total
spectrogram amplitude. Mel-spectrograms were then
generated for each clip up to a frequency of 8 kHz,
represented by 96 mel-spaced bins with a total dynamic
range of 60 dB.

Table 1. Summary of included datasets
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Dataset | Participants | Clips | Response Type
MJL 42 80 Single

NG23 41 71 Single

NG22 30 51 Single

RN 50 120 Single

AJ 25 9 Continuous
Meadow | 16 24 Single

Scilly 22 27 Single

Athens | 110 56 Single
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3.2 Psychoacoustic Annoyance Models

Sound quality metrics required for Widmann’s
psychoacoustic annoyance model were derived from the raw
audio files using the SQAT library in MATLAB [19].
Pearsons R was used to quantify correlations between the
Mean Perceived Annoyance’s (MPA) and the sound quality
metrics. Scatter plots showing correlations between
perceived and psychoacoustic annoyance, as well as those
with individual SQMs, are shown in Figure 1.

3.3 Deep Learning Models

Two deep neural network architectures were developed to
predict perceived annoyance directly from audio
spectrograms: a CNN and a CRNN. Similarly to the previous
study [2], input spectrograms were generated using the
torchaudio library [20], with particular attention to time-
frequency resolution parameters which were previously
found to significantly impact model performance. The CNN
architecture consists of two convolutional layers with 3x3
kernels outputting 96 and 32 channels respectively, each
followed by 2x8 max pooling and batch normalisation.
These feed into three fully-connected layers of 1000, 100,
and 1 output units with ReLU activation functions and
dropout regularisation (p=0.2) between all layers except the
final output. The CRNN extends this architecture by
incorporating recurrent processing after the convolutional
feature extraction. It utilises the same initial convolutional
layers but then reshapes the output for sequential processing
through two bidirectional LSTM layers with 128 and 64
hidden units respectively. An attention mechanism focuses
on the most relevant temporal features before passing
through fully-connected layers of 512 and 128 units, then
finally one single unit. The CRNN employs higher dropout
(p=0.3) and gradient clipping at a maximum norm of 5.0 to
stabilise training. Through systematic grid search of FFT
lengths {512, 256, 128, 64} and hop lengths {256, 128, 64,
323.

3.4 Training & Testing

The models were implemented using PyTorch [21] and
trained with MSE loss and Adam optimiser (learning rate
1 x 1073 for CNN, 5 x 107* for CRNN). Early stopping
with 40 epochs patience prevented overfitting across a
maximum of 200 epochs with batch size 16. The dataset was
randomly split into training (75%, n=520), validation (13%,
n=91), and test (12%, n=83) sets, with shuffling to ensure
even distribution across data sources. Performance was
evaluated using MAE and coefficient of determination (R?).
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Figure 1. Histograms of psychoacoustic features and
correlations of these to perceived annoyance.

Regularisation techniques included weight decay (1 X
1075) and gradient clipping at a maximum norm of 5.0 to
prevent overfitting and stabilise training. Computation time
per epoch ranged from 70 to 120 seconds, with training
conducted on a Mac Mini M2 to utilise Metal Performance
Shaders (MPS) backend for GPU training acceleration [22].
For comparison, two Support Vector Regression (SVR)
baseline models were implemented: one with sigmoid kernel
fitted directly to Widmann psychoacoustic annoyance
values, and another with polynomial kernel (degree 3)
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trained on the raw sound quality metrics.

4. RESULTS AND DISCUSSION

The SVR model trained on PA values using a sigmoid kernel
achieved an MAE of 0.87 and an R? of 0.49, while the
polynomial SVR trained on raw psychoacoustic features
yielded a marginally better performance, with an MAE of
0.77 and R? of 0.56. As seen in the previous study, this
suggests that a model trained directly on the constituent
features of PA can outperform the composite metric itself.
The sigmoid curve fit, shown in Figure 2, follows a similar
logistic shape to that reported in earlier work, with perceived
annoyance values beginning to plateau at higher PA levels.
A notable concentration of moderate-to-high annoyance
ratings (7-10 range) was identified, predominantly
originating from the Athens dataset. This clustering suggests
potential contextual influences beyond the immediate
acoustic stimuli. Qualitative observations during the
soundwalk revealed localised environmental factors that
may have significantly influenced participant responses.
Specifically, the Athens dataset exhibited a marked tendency
toward elevated annoyance ratings, potentially attributable to
pre-existing environmental disturbances independent of the
specific acoustic stimulus. Despite these potential outliers,
the SVR model maintained robust predictive performance,

10

Mean Perceived Annoyance

® Train Data
® Test Data
SVR Fit

30 40 50
Psychoacoustic Annoyance

60 70 80

Figure 2. Fit of perceived annoyance to Widmann
psychacoustic annoyance values by SVR model.
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Table 2. Results for each network architecture and
frame/hop length combination.

CNN CRNN
Frame / Hop

MAE R* MAE R?

S12/256 . 077 | 055 | 065 | 0.66

S12/128 0384 | 029 @ 0.62 0.7

512/64 | 056 075 055 | 0.76

5127321 085 | 0.54 0.7 0.78

256/128 076 = 062 | 056 | 081

256/64 | 064 @ 071 0.49  0.86

256/32 | 087 | 039 | 083 | 046

128/64 072 @ 056 @ 058 | 0.79

128/32 (.81 046 | 0.71 0.63

64/32 0.77 0.5 094 | 0.44
demonstrating  remarkable  resilience to  dataset

heterogeneity.

Table 2 shows that CNN models exhibited varied

performance across different time-frequency resolutions.
The optimal configuration was identified as an FFT length of
512 samples and hop length of 64 samples, achieving MAE
0.56 / R? 0.75. This configuration demonstrated a robust
balance between spectral and temporal feature extraction.
Configurations with shorter hop lengths (32 samples)
consistently underperformed, with MAE values ranging
from 0.85 to 0.87 and lower R* values. The 256 / 64
configuration also showed strong performance, with MAE
0.64/R>0.71.

The CRNN models demonstrated superior performance
compared to the CNN models. The 256 / 64 configuration
in particular emerged as the standout, with an impressive
MAE 0.49 / R? 0.86, indicating a significant improvement
in predictive accuracy over the CNN. The recurrent
architecture showed more consistent performance across
different FFT and hop length configurations. The 512 / 64
configuration also performed well, with MAE 0.55 / R?
0.76. Configurations with 32-sample hop lengths showed
decreased performance, with the 512 / 32 configuration
achieving an R? of 0.78 but other configurations showing
less consistent results.
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The lower MAE and higher R? values of the CRNN results
suggest that the bidirectional LSTM layers and attention
mechanism provide additional context for predicting
perceived annoyance. All models achieved their best
ratings with hop 64 and FFT 256 or 512, aligning with the
previous hypothesis about capturing perceptually relevant
acoustic fluctuations. This configuration provides a 4ms
time resolution, potentially capturing psychoacoustic
features analogous to roughness and temporal
modulation.

5. CONCLUSIONS AND FUTURE WORK

Several promising avenues for future research emerge
from this study. First, investigating transfer learning
techniques  could potentially = enhance  model
generalisability. The incorporation of additional datasets
from various acoustic environments might improve model
robustness and predictive capabilities. Expanding the
research to other sound sources beyond UAS could
establish a more comprehensive framework for sound
affect prediction. As tonal, high-frequency and synthetic
novel noises from e-mobility proliferate into urban
environments, it would be invaluable to expand on the
current models to classify sounds in noise clips and apply
weightings based on source type, detectability and
intermittency to better measure more eventful
soundscapes. Finally, exploring objective ratings of
annoyance from psychoacoustic models from Di, More,
Torija et al. and NASA, along with their relative metrics,
could help better calculate both subjective target
annoyances and objective annoyance-model based
ratings. This could, in theory, lead to a framework for
open-source sound libraries to become extremely useful
and adaptable to noise annoyance prediction,
classification, training and learning.
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