
11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

COMPARISON OF DIFFERENT URBAN TRAFFIC REPRESENTATIONS
FOR ROAD TRAFFIC NOISE INDICATORS ESTIMATION

Yu Gao1,2 Sacha Baclet2,3 Pierre Aumond1

Romain Rumpler2,3 Arnaud Can1∗
1 Univ Gustave Eiffel, CEREMA, UMRAE, F-44344 Bouguenais, France

2 Department of Engineering Mechanics, KTH, Sweden
3 ECO2 Vehicle Design, KTH, Sweden

ABSTRACT

This study designs a comparison of the estimation of road
traffic noise from different urban traffic representations
between their corresponding modelling chains. Based on
a microscopic traffic dataset in Stockholm, three kinds
of urban traffic representations (Microscopic traffic rep-
resentations, Aggregated traffic representations, and Hy-
brid traffic representations) and their corresponding traf-
fic noise estimation models are introduced from distinct
perspectives. The distribution result of LAeq,1h high-
lights that all models follow similar distribution patterns
in noise exposure despite different traffic representations,
while still slight differences in peak noise intervals re-
main. Two proposed hybrid traffic representation meth-
ods expand acoustic indicator sights from aggregated traf-
fic representations by introducing dynamics and stochas-
ticity, which can yield comparable noise estimates at high
percentile indicators. The noise maps highlight that a gen-
eral but uneven underestimation exists in all other modes
compared to microscopic traffic representations. Desired
improvements of hybrid traffic representation methods are
discussed, aiming to bring acoustic evaluation enrichment
in urban traffic environments.
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1. INTRODUCTION

Accurate noise estimation is critical for understanding the
environmental impact of traffic systems. In recent years,
various traffic output data from traffic simulation models
have been widely utilized in estimating traffic noise.
Stressed in different urban conditions and spatial scales,
corresponding model chains provide unique analytical
perspectives in traffic noise estimation [1–3]. Macro-
scopic traffic models provide aggregated link-based traffic
speed and flow rate [4], while micro-simulation traffic
models provide granular outputs (such as float point
trajectories) as a basis for noise modelling. In addition,
hybrid representations allow the gap between trajectories
and aggregated representations to be bridged [5, 6]. This
article aims to describe the state of the art of the various
couplings and implementations currently available, and
to propose a comparative analysis of their advantages and
limitations, including implementation specificities, and
resulting acoustic level accuracy.

These different traffic representation datasets are
derived from the same micro-simulation scenario in an
urban area in Stockholm. Noise levels are estimated for
each dataset using established acoustic models in the
latest version of CNOSSOS-EU [7, 8], and compared to
the reference micro-simulation based estimation. This
research provides insights into the influence of different
traffic representation outputs from a microscopic traffic
representation scenario on noise estimation, which could
be referred to by practitioners in selecting traffic outputs
for urban noise assessments.
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2. METHODS

2.1 Traffic representations

The study is based on microscopic traffic data, typically
representative of higher density traffic on the island of
Södermalm in Stockholm, Sweden. In order to assess the
impact of different traffic representations on noise estima-
tions, three kinds of traffic representations are introduced
from distinct perspectives in this part.

2.1.1 Microscopic traffic representations

SUMO Mode
The original traffic simulation is based on SUMO (Sim-
ulation of Urban Mobility) [9], which is an open-source,
highly flexible microscopic traffic simulator widely
used for modelling urban traffic dynamics. SUMO
provides detailed vehicle-level movement data, including
individual vehicle trajectories, acceleration, deceleration,
lane-changing behavior, and interactions with traffic
control mechanisms such as traffic lights and stop signs.

In this case study, the simulation is configured to
simulate typically high traffic volumes and frequent
stop-and-go movements.

2.1.2 Aggregated traffic representations

Computational efficiency and usability of microscopic
traffic data in large-scale studies are usually limited.
Aggregated traffic representations represent the classic
approach commonly used in noise mapping [10], as
it relies on available urban traffic counting loops or
similar detection methods. Based on SUMO Mode, three
distinct aggregated scenarios are analyzed: Flow Sensor
Mode, Time Mean Speed Mode, and Space Mean Speed
Mode. Each mode provides a unique perspective on link
attributes including traffic flow rate and mean speed.

Flow Sensor Mode
In this mode, traffic speed is estimated using randomly
placed flow sensors along each link. The methodology
follows these steps:

• A single sensor point is randomly assigned to each
road link.

• The sensor has a detection range of 10 meters,
to avoid duplicate records, recording vehicle posi-
tions and passing time on the nearest link to the
vehicles.

• As recorded vehicles pass through the sensor’s de-
tection area, their speeds are calculated.

• The link mean speed is then computed as the aver-
age speed of all vehicles detected by the sensor.

This approach mimics real-world traffic monitoring
via stationary sensors but is limited by the fact that
only a small portion of each road segment is observed,
potentially leading to biases in speed estimation.

Time Mean Speed (TMS) Mode
The Time Mean Speed (TMS) [11] mode refines speed
measurement from Flow Sensor Mode by considering all
the appearances of vehicles on the same link. The process
involves:

• Identifying vehicles that appear on the same near-
est link at least twice within a given time window,
capturing travel distance and time between vehicle
positions.

• Calculating the speed of each detected vehicle
along the nearest link.

• Computing the average speed of all identified vehi-
cles on the link.

Space Mean Speed (SMS) Mode
The Space Mean Speed (SMS) [11] mode focuses on
speed accuracy by incorporating the total travel time and
travel distances regardless of the identification of single
vehicles. This method follows a similar counting mecha-
nism to the TMS mode but differs in speed computation:

• Vehicles are counted if they appear on the same
nearest link at least twice.

• The total travel time and travel distance of all the
vehicles along the link are recorded.

• The space mean speed is then computed as the ratio
of the total travel distance to the total travel time for
all vehicles on the link.

2.1.3 Hybrid traffic representations

In addition to the three traffic aggregation methods
discussed earlier, this study explores two hybrid traffic
representation methods. These methods aim to recon-
struct individual vehicle movements along road links
using link-aggregated traffic data, specifically traffic
flow rates and average traffic speeds. By leveraging
these hybrid techniques, we can generate a more detailed
microscopic representation of traffic while preserving
the macroscopic traffic characteristics derived from
aggregated datasets, such as the traffic output from

1350



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

macroscopic and agent-based simulation models.

Two proposed methods introduce stochastic varia-
tions to generate more dynamic vehicle trajectories:
Density-Based Vehicle Movement Reconstruction [12]
and Poisson-Based Vehicle Trajectory Reconstruc-
tion [13]. Each method uses different statistical
modelling techniques to introduce variability in vehicle
movements while maintaining consistency with the
underlying link-aggregated data, giving an output similar
to a microscopic traffic simulation with individual vehicle
position and speed on 1-second time resolution. Time
Mean Speed (TMS) Mode was selected as the base
dataset. This choice ensures that vehicle movements are
reconstructed based on a more refined speed estimation
approach.

Density-Based Vehicle Movement Reconstruction
Mode
This approach reconstructs individual vehicle movements
at each predefined position based on the estimated road
traffic density along each link. Traffic density is a key
parameter in traffic flow theory, representing the number
of vehicles per unit length of a roadway. The computed
density determines the probability of vehicle occurrence
at different positions along each road. Individual vehicle
movements are then reconstructed through iterative
probabilistic processes.

Poisson-Based Vehicle Trajectory Reconstruction
Mode
The second method reconstructs vehicle trajectories using
a Poisson process, which is commonly used to model the
random arrival of vehicles in traffic flow theory. Unlike
the density-based method, this approach does not rely on
estimating the occurrence probabilities of all the possible
positions along each road, but on distributing vehicles’
trajectories under a Poisson random arrival model.

2.2 Modelling chains

All the noise simulation modelling chains in this arti-
cle consist of two parts: the traffic model output repre-
sentations and the noise calculation model. For aggre-
gated scenarios, the noise levels emitted by road traf-
fic are estimated based on the average flow rates and
speeds of vehicle flows per road section. Alternatively,
the noise source levels are estimated from the trajectory
points along the roads for dynamic traffic scenarios in-

cluding SUMO Mode, Density-Based Mode, and Poisson-
Based Mode.

2.3 NoiseModelling

NoiseModelling [14] serves as the core computational
framework for the noise calculation model, which
is an open-source library capable of producing noise
maps. This research employs the CNOSSOS-EU stan-
dard methodology to estimate noise emissions and prop-
agation effects, utilizing its emission model, path-finding
algorithm, and attenuation model to simulate noise trans-
mission from traffic sources to receiver points. However,
for the acceleration correction component, the IMAG-
INE method is applied over CNOSSOS-EU here. While
CNOSSOS-EU includes a distance-based acceleration
correction in relation to intersections, the choice made to
use the IMAGINE method [15] offers a more precise ap-
proach to capture acceleration-induced noise variations by
directly considering the actual accelerations.

2.4 Case Study and Parameters

This study is based on the traffic conditions in the
Södermalm district, a central island in Stockholm,
covering approximately 10 km² of urban traffic activity.
Södermalm is a densely populated area with a well-
developed road network, making it an ideal location for
evaluating different traffic representation methods. (See
Figure 1)

Figure 1. Network and position of noise receivers.

Most of the major roads within the study area are
included in the simulation, with microscopic traffic data
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suitable to capture a representative snapshot of urban
mobility and one of the most significant noise sources
throughout the day.

Since this research primarily investigates traffic rep-
resentation methods, vehicle composition is intentionally
simplified. To reduce complexity and maintain consis-
tency in the analysis, only light vehicles are simulated,
while heavy vehicles, buses, and motorized two-wheelers
are excluded. These vehicle types introduce additional
variability in both traffic dynamics and acoustic noise
emissions, which may lead to increased uncertainty in
hybrid traffic representation methods.

To assess the impact of traffic on noise levels, a to-
tal of 1,389 receiver points are strategically placed around
buildings and along traffic corridors. The following noise
level indicators are considered in the analysis: LAeq,1h
(A-weighted equivalent continuous sound level per hour
per point) is computed for all traffic scenarios. LA10,1h,
and LA1,1h are evaluated specifically for dynamic traffic
representation scenarios (SUMO Mode, Density-Based
Mode, and Poisson-Based Mode), where more detailed
vehicle movement patterns are simulated.

Table 1 provides a summary of the key parameters
used in the acoustic calculations for this study.

Table 1. Parameter values for sound propagation

Parameters Configuration
Maximal order of reflection 1
Maximal order of diffraction 1
Maximal distance source-receiver 250m
Maximum source-reflection distance 50m
Receivers height 1.5m
Ground absorption coefficient G=0
Spatial resolution D=20m

3. RESULTS

3.1 Statistical results

Figure 2, 3, and 4 present the Kernel Density Estimation
(KDE) curves of the road traffic noise indicators chosen
LAeq,1h, LA10,1h, and LA1,1h across various modelling

chains. These figures allow for a direct comparison
of noise level distributions under the different traffic
simulation approaches introduced in 2.1, including the
initial SUMO microscopic mode, the density-based
mode, and the Poisson-based mode.

As shown in Figure 2, the KDE curves of LAeq,1h
illustrate the overall equivalent noise levels across differ-
ent scenarios. Despite minor variations, all modes exhibit
a similar bimodal distribution, indicating that the general
noise exposure trends remain consistent regardless of
the underlying traffic modelling approach. However, the
SUMO mode (blue curve) shows slightly higher noise
levels in the first and the second peaks, and gains more
density in the highest noise interval (60 - 70 dB), which
may be explained by a more detailed representation of
vehicle flow dynamics.

Figure 2. KDE Curves of Different LAeq,1h .

Figure 3 presents the KDE curves for LA10,1h. Unlike
LAeq,1h, which can be estimated from any aggregated
traffic scenario, LA10,1h requires dynamic approaches to
capture variations in noise over time. Therefore, only the
SUMO microscopic mode, the Density-based mode, and
the Poisson-based mode are represented in this figure.
The Density-Based mode (red curve) and the Poisson-
Based mode (green curve) align closely with the SUMO
mode, particularly at lower noise levels. However, minor
deviations appear in the tail of the distribution, indicating
that high-intensity noise events may be influenced by
traffic flow representation differences.

Figure 4 focuses on LA1,1h, capturing the highest noise
levels experienced during the simulation. Similarly to
LA10,1h, LA1,1h can only be derived from dynamic
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Figure 3. KDE Curves of Different LA10,1h.

traffic models. The results indicate that the SUMO
microscopic mode captures more pronounced peaks,
reinforcing the idea that detailed vehicle-level modelling
better represents transient events such as acceleration and
braking. The Density-Based and Poisson-Based modes
follow similar trends but exhibit smoother distributions,
likely due to their simplified vehicle representation.

Figure 4. KDE Curves of Different LA1,1h.

3.2 Noise mapping

Figures 5, 6, 7, 8, and 9 display the estimated LAeq,1h
difference values of various scenarios compared with
the reference SUMO mode. These figures contribute
to explaining the deviations from the SUMO mode
(blue curve), as most of the estimated LAeq,1h levels are
underestimated while only a few of the receivers exhibit
higher LAeq,1h levels in aggregated link-based scenarios.

Noteworthy is the fact that among these figures, the
portion of receivers at which levels are greatly un-
derestimated (deep blue color dots) is much reduced
for Density-Based and Poisson-Based modes when
compared to the other three aggregated traffic represen-
tation scenarios. This result suggests that hybrid traffic
representations have the potential to alleviate the underes-
timation induced by the loss of details in the description
of vehicle dynamics associated with aggregated traffic
representations.

Figure 5. Sensor Mode acoustic indicators compared
to SUMO Mode.

Figure 6. TMS Mode acoustic indicators compared
to SUMO Mode.

4. CONCLUSIONS

This study offers a comparison of different modelling
chains for estimating road traffic noise, focusing on
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Figure 7. SMS Mode acoustic indicators compared
to SUMO Mode.

Figure 8. Density Mode acoustic indicators com-
pared to SUMO Mode.

variations in noise distributions under distinct traffic
representation approaches. By analyzing the Kernel
Density Estimation curves of various noise indicators and
noise indicator maps, several key observations are made.

First, despite differences in traffic representation, all
models exhibit similar distribution patterns. This suggests
that hybrid traffic modelling approaches, including
Density-based and Poisson-based methods, can yield
comparable noise estimates, especially at high percentile
indicators. These indicators are limited in aggregated
link-based scenarios, making hybrid methods a practical
alternative when detailed microscopic data is unavailable.

However, the differences observed in the KDE curves
and the distribution of noise maps indicate that while

Figure 9. Poisson Mode acoustic indicators com-
pared to SUMO Mode.

these methods effectively capture general trends, they
may not fully account for noise from transient vehicle
behaviors and uneven vehicle movement distributions.
These factors can contribute to variations in high-noise
conditions, generally leading to slightly lower noise level
estimation when ignored.

Overall, this comparative analysis highlights the in-
fluence of different traffic representations on noise
estimations with a range of noise indicators. While de-
tailed microscopic simulations offer high-fidelity vehicle
dynamics, Density-based and Poisson-based methods
provide alternatives, particularly suited for scenarios
with limited data availability. Compared to detailed
microscopic simulations and static aggregated link-based
scenarios, these approaches maintain a balance between
broad accuracy insights and practicality. Future research
could further refine these models by integrating detailed
vehicle behaviors and improving their adaptability to
complex urban traffic environments.
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