

FORUM ACUSTICUM EURONOISE 2025

COMPARISON OF DNN-BASED AND TRADITIONAL HEARING-AID ALGORITHMS FOR SENSORINEURAL HEARING-LOSS

Marjoleen Wouters^{1*}

Chuan Wen¹

Attila Fráter¹

Sarah Verhulst¹

¹ Hearing Technology@WAVES, Dept. of Information Technology, Ghent University, Belgium

ABSTRACT

Traditional hearing aid (HA) algorithms, based on computational and non-differentiable auditory models, are unable to compensate for cochlear synaptopathy (CS). In order to provide hearing solutions for sensorineural hearing-loss (SNHL), deep-neural-network- (DNN) based HAs have recently been developed. We trained several DNN-based HA models using an optimized version of our differentiable DNN-based auditory model *dCoNNear* to compensate for outer-hair-cell (OHC) loss and/or CS. The HA models were trained using backpropagation to minimize the difference in hearing-impaired and normal-hearing auditory nerve (AN) responses. On the basis of transfer functions, simulated auditory model responses to standard auditory stimuli and speech, and the normalized-root-mean-square-error (NRMSE) of the AN population response, we compare our own DNN-based HAs to the NAL-NL2 reference HA to offer an objective assessment of DNN-based HA processing as a compensation strategy for SNHL. We will objectively assess the effect of the HA processing on the sound quality and speech intelligibility in future clinical experiments.

Keywords: *hearing-aid processing, machine-learning, cochlear synaptopathy*

**Corresponding author:* marjoleen.wouters@ugent.be

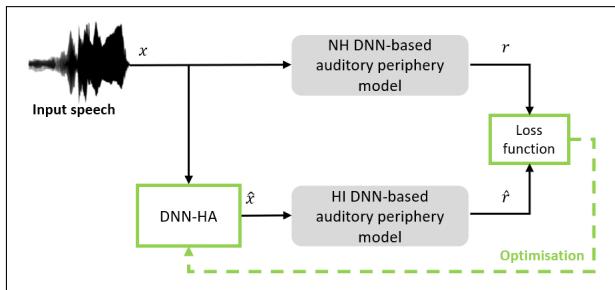
Copyright: ©2025 Wouters et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

1. INTRODUCTION

Noise exposure, ototoxic drugs, and aging can cause sensorineural hearing-loss (SNHL) by damaging the outer-hair-cells (OHCs) or synapses to the auditory nerve (AN), the latter is a condition known as cochlear synaptopathy (CS) [1–3]. CS often leads to difficulties understanding speech in noisy environments, even when pure tone audiometric thresholds remain normal, therefore CS is called 'hidden hearing loss'. Traditional hearing aids primarily address OHC loss by amplifying sounds based on audiometric thresholds. However, they do not specifically compensate for the auditory processing challenges associated with CS. Recent advancements in auditory modeling and machine learning (ML) offer promising approaches. By employing differentiable descriptions of biophysical models of hearing impairment, ML-based audio signal processing algorithms can be developed to compensate for various aspects of SNHL, including both OHC loss and CS [4–7]. These models facilitate non-linear compensation without relying on pre-defined gain tables, allowing for more personalized and effective hearing assistance.

2. MATERIALS AND METHODS

Here, we present a couple of DNN-HAs that were trained in a closed-loop system consisting of a normal-hearing (NH) and hearing-impaired (HI) *dCoNNear* auditory periphery model, visualized in Figure 1. They were trained using backpropagation, such that the DNN-HA processes the input speech x into the processed speech \hat{x} in order to result into a HA-compensated AN response \hat{r} that is restored as close as possible to the NH AN response r , by minimizing the difference between the HI and NH AN response using different sets of loss functions [4, 4–10, 10–12].



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

FORUM ACUSTICUM EURONOISE 2025

Figure 1. Overview of the backpropagation loop used to train the DNN-based HA models.

2.1 dCoNNear auditory model

We developed *dCoNNear*, an improved neural network model of the auditory periphery, building upon the previously used biophysically-inspired *CoNNear* model [8, 11–13]. *dCoNNear* offers a fast, differentiable simulation of human auditory processing: basilar membrane (BM) vibrations, inner hair cell (IHC) potentials and AN firing across 201 cochlear locations (center frequencies ranging from 112 Hz to 12 kHz). Since the previous *CoNNear* model, which used an auto-encoder convolutional-neural-network (CNN) architecture, caused artifacts such as aliasing and tonal distortions, we designed a new architecture for *dCoNNear*, inspired by temporal-convolutional-networks (TCN) and deep feed-forward sequential memory networks (DFSMN) [4–7, 14]. In order to model OHC loss in the *dCoNNear* auditory periphery, we use transfer learning to retrain the cochlear stage of *dCoNNear* [15], based on the measured audiogram [16]. To model CS in *dCoNNear*, we modify the number of auditory nerve fibers (ANFs) to include a different number of high-, medium- and low-spontaneous rate (HSR, MSR and LSR) ANFs per characteristic frequency (CF). For the NH auditory periphery, the model uses 13 HSR, 3 MSR and 3 LSR ANFs per CF [13]. In case of CS, high-frequency ANFs are progressively reduced, starting with LSR and MSR ANFs, leading to more severe CS profiles where even HSR ANFs are lost [16].

2.2 DNN-based HA models

In this work, we present five different DNN-HAs, trained in a closed-loop system to compensate for different combinations of OHC loss and/or CS, using the same *dCoNNear* architecture, but different loss functions to minimize the difference between different aspects of the

NH and HI auditory responses [4–9, 11, 12]. The training dataset consisted of 2310 randomly selected recordings from the TIMIT speech corpus [17], calibrated to 70 dB SPL rms, with reference $p_0 = 2 \cdot 10^{-5} \text{ Pa}$.

2.3 HA model evaluation

To evaluate the capabilities of the different DNN-HAs in compensating for selected SNHL profiles, we will investigate the HA processing performance for speech stimuli and standard auditory stimuli such as clicks, steps and sinusoidally amplitude modulated pure tones. We will examine the transfer function of each of the DNN-HAs, to observe the frequency- and level- dependent gain applied in each SNHL condition. The DNN-HA processed stimuli were given to the HI *dCoNNear* model with the considered degree of OHC loss and CS profile, to investigate the difference in simulated responses between the NH and HI models, and see how the HA processing affects the output for the HI case, aiming to restore the AN responses to the NH level. The normalized root-mean-square-error (NRMSE) of the AN population response shows how well each of the DNN-HAs performed at restoring the AN population response to the NH level for each phoneme category of the TIMIT core test set. We will compare the outcomes of the DNN-HAs to the reference NAL-NL2 HA prescription procedure from The National Acoustic Laboratories (NAL) which applies dynamic compression, using the openMHA toolbox [18, 19].

3. RESULTS

At the conference, we will present the processing outcomes for the different auditory stimuli to investigate which auditory features the different HA processing algorithms focused on to compensate for CS and/or OHC loss, and compare this with the reference NAL-NL2 processing.

4. ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme (grant agreement No 678120 Rob-Spear), FWO Machine Hearing 2.0 (216318G) and EIC transition grant EarDiTech (101058278).

11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

FORUM ACUSTICUM EURONOISE 2025

5. REFERENCES

- [1] S. G. Kujawa and M. C. Liberman, "Adding insult to injury: Cochlear nerve degeneration after "temporary" noise-induced hearing loss," *Journal of Neuroscience*, vol. 29, pp. 14077–14085, 11 2009.
- [2] A. C. Furman, S. G. Kujawa, and M. C. Liberman, "Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates," *J Neurophysiol*, vol. 110, pp. 577–586, 2013.
- [3] E. Lobarinas, C. Spankovich, and C. G. L. Prell, "Evidence of "hidden hearing loss" following noise exposures that produce robust TTS and ABR wave-I amplitude reductions," *Hearing Research*, vol. 349, pp. 155–163, 6 2017.
- [4] F. Drakopoulos and S. Verhulst, "A differentiable optimisation framework for the design of individualised dnn-based hearing-aid strategies," *ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2022.
- [5] F. Drakopoulos and S. Verhulst, "A neural-network framework for the design of individualised hearing-loss compensation," *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, vol. 31, p. 2395–2409, 2023.
- [6] M. Wouters, F. Drakopoulos, and S. Verhulst, "Machine-learning-based audio algorithms for cochlear synaptopathy compensation : which speech features are enhanced?," *Proc. of the 24th International Congress on Acoustics*, 2022.
- [7] M. Wouters, F. Drakopoulos, and S. Verhulst, "Machine-learning-based audio algorithms for hearing loss compensation," *Proc. of Forum Acusticum 2023 : 10th Convention of the European Acoustics Association*, 2023.
- [8] D. Baby, A. Van Den Broucke, and S. Verhulst, "A convolutional neural-network model of human cochlear mechanics and filter tuning for real-time applications," *Nature Machine Intelligence*, vol. 3, pp. 134–143, 2 2021.
- [9] S. Verhulst, D. Baby, F. Drakopoulos, and A. Van Den Broucke, "Neural network model for cochlear mechanics and processing," *US Patent 11,800,301*, 2023.
- [10] S. Verhulst, F. Drakopoulos, A. Van Den Broucke, and S. Keshishzadeh, "Closed-loop method to individualize neural-network-based audio signal processing," *US Patent 12,212,929*, no. 12212929, 2025.
- [11] F. Drakopoulos, D. Baby, and S. Verhulst, "A convolutional neural-network framework for modelling auditory sensory cells and synapses," *Communications Biology*, vol. 4, 12 2021.
- [12] C. Wen, G. Torfs, and S. Verhulst, "Artifact-free sound quality in dnn-based closed-loop systems for audio processing," *arXiv:2501.04116v2*, 2025.
- [13] S. Verhulst, A. Altoè, and V. Vasilkov, "Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss," *Hearing Research*, vol. 360, pp. 55–75, 3 2018.
- [14] S. Zhang, M. Lei, Z. Yan, and L. Dai, "Deep-FSMN for Large Vocabulary Continuous Speech Recognition," *arXiv preprint, arXiv:1803.05030*, 2018.
- [15] A. Van Den Broucke, D. Baby, and S. Verhulst, "Hearing-impaired bio-inspired cochlear models for real-time auditory applications," *Proc. of the Annual Conference of the International Speech Communication Association, INTERSPEECH*, vol. 2020-October, pp. 2842–2846, 2020.
- [16] S. Keshishzadeh, M. Garrett, and S. Verhulst, "Towards personalized auditory models: Predicting individual sensorineural hearing-loss profiles from recorded human auditory physiology," *Trends in Hearing*, vol. 25, 2021.
- [17] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, and D. Pallett, "DARPA TIMIT acoustic-phonetic continuous speech corpus CD-ROM. NIST speech disc 1-1.1," *NASA STI/Recon Technical Report N*, vol. 93, p. 27403, 01 1993.
- [18] G. Keidser, H. Dillon, M. Flax, T. Ching, and S. Brewer, "The NAL-NL2 Prescription Procedure," *Audiology research*, vol. 1, 2011.
- [19] openMHA, "Open Master Hearing-Aid," 2025.

