
11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

COMPLEX ROOM ACOUSTICS RENDERING WITH MULTI-ZONE
AURALIZATION: APPLICATION TO TEATRO PRINCIPAL DE

VALENCIA

Jesus Lopez-Ballester1, Jaume Segura-Garcia2∗, Maximo Cobos2
Rosa Cibrián3, Salvador Cerdá4, Alicia Giménez5

1 Department of Electronic Engineering, Universitat de Valencia, Spain
2 Department of Computer Science, Universitat de Valencia, Spain

3 Department of Physiology, Universitat de Valencia, Spain
4 Department of Applied Mathematics, Universitat Politecnica de Valencia, Spain

5 Department of Applied Physics, Universitat Politecnica de Valencia, Spain

ABSTRACT

Auralization in complex rooms is not always a straight-
forward task. The most common and simple approach in-
volves taking an averaged impulse response for the entire
room and applying binaural filters. For a more realistic ap-
proach, the room acoustic analysis of such halls requires
the measurement or the simulation of impulse responses
in different areas, to analyze the main room acoustic met-
rics. At this stage, impulse responses can be grouped to
define specific zones of interest. In this project, we present
a virtual acoustic demonstration of a theatre in Valencia,
originally built in 1832 and last refurbished in 2012. For
this theatre, we have developed an application specifically
designed to represent audio modified with different Im-
pulse Responses (IRs) within this enclosed space. Us-
ing Text-to-Speech techniques based on Artificial Intel-
ligence, we have synthesized human speech, allowing us
to convert written text into spoken audio in any language.
Each IR has been convolved with this AI-generated ane-
choic audio. In this project, we use the Teatro Principal de
València as a test space, where reverberation zones shape
the acoustic environment and the custom-synthesized spo-

*Corresponding author: jaume.segura@uv.es.
Copyright: ©2025 Lopez-Ballester et al. This is an open-access
article distributed under the terms of the Creative Commons At-
tribution 3.0 Unported License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the orig-
inal author and source are credited.

ken text is integrated. The goal is to create a dynamic au-
ralization of the poem that inaugurated the theatre, moving
through the seating area to enhance the immersive experi-
ence.

Keywords: Auralization, Theatre, Spatialization, Scene
recreation

1. INTRODUCTION

In the last decade, immersive audio experiences have
gained significant interest across different domains in-
cluding virtual reality (VR), architecture, heritage preser-
vation, and acoustic design. Central to these experiences
is the accurate simulation of acoustic environments—a
process that enables users not only to see but also to
hear and feel the spaces they explore. As virtual environ-
ments grow more sophisticated, the demand for realistic,
spatially-aware sound rendering systems continues to rise.

Auralization [1], the process of rendering audible
simulations of a sound field within a virtual environment,
has become a cornerstone technology in the field of virtual
acoustics. By combining acoustic modeling, impulse re-
sponse measurements, and binaural rendering techniques,
auralization bridges the gap between visual immersion
and auditory realism. This capability is especially criti-
cal in complex scenarios such as concert hall design, his-
torical reconstructions, and performance space evaluation,
where the auditory experience plays a pivotal role.

DOI: 10.61782/fa.2025.0243

6579



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

In traditional auralization methods, it is typically
assumed a single source and listener position, limit-
ing their effectiveness in dynamic or multi-user applica-
tions [2]. Addressing this limitation, multi-zone aural-
ization introduces a framework where different acoustic
zones—each characterized by distinct room impulse re-
sponses (RIRs)—can be rendered simultaneously within a
shared virtual space. This approach enhances the spatial
coherence and realism of interactive audio scenes, allow-
ing users to navigate through and experience acoustical
changes within complex environments [3, 4].

This paper presents a multi-zone auralization system
based on a use case such as the Teatro Principal de Valen-
cia, a historic theater in Spain. By integrating impulse
responses measured in situ with synthetic anechoic au-
dio sources generated via text-to-speech neural networks,
we render a layered auditory landscape mapped onto a
3D model of the venue. This method not only recreates
the unique acoustic signatures of different areas within
the theater but also enables the presentation of perfor-
mances—spoken or musical—without the need for live
recordings.

The proposed system uses Unity and FMOD Studio
[5] for spatial rendering and interactivity, highlighting an
accessible pipeline for combining real-world acoustic data
with modern game engine technologies. This work con-
tributes to the growing body of research in acoustic virtual
reality by demonstrating a practical and scalable solution
for immersive sound simulation in complex architectural
spaces.

2. DESIGN AND IMPLEMENTATION

As described in the previous section, in our design we will
perform text-to-speech voice synthesis [6] anechoically.
Then we will perform an auralization by zones that will
be finally taken to a 3D virtual environment [5]. The three
parts of our design will be: text-to-speech audio genera-
tion [7, 8], auralization and interactive 3D playback. The
different solutions adopted in the final design for each of
these stages are detailed below.

2.1 Graphics engine

For the development of the zone rendering system, it is
necessary to create a 2D or 3D environment in which to
place these zones and then configure them as needed. In
this case, working with impulsive responses, we are look-
ing for an application rich in properties to work in 3D
environments. Thanks to the strong growth of the video

game industry, a large number of graphics engines have
emerged that allow large companies and individuals to de-
velop their video games according to their needs. Large
companies often use their own graphics engines, such as
Frostbite, Rockstar Advanced Game Engine... Nowadays,
Unity and Unreal Engine are the most used outside the big
companies with their own engine, their level of creativity,
diversity and technology, make them the first and second
choice when developing an application. For this project,
both meet the expectations, however, we will have to se-
lect which one is more convenient when implementing our
components.

• Unity is a multiplatform video game engine [9]. It
allows the creation of 2D and 3D games and appli-
cations in real time, based on an API programmed
in the C# programming language. In addition, it
includes a series of tools that facilitate the creation
of interactive content, such as drag-and-drop me-
chanics or its own store with thousands of high-
quality products, most of them free. This tool is
used worldwide by different development studios.
However, its main intention is to offer indepen-
dent developers a place to learn and develop their
projects.

• Unreal Engine [10] is a video game engine devel-
oped by the company Epic Games presented as
a first-person shooter, over the years it has been
adopted by all kinds of video games of three-
dimensional genre. Programmed in C++ and flex-
ible in platform portability, it integrates a large
number of features, such as pipeline integration,
map development, animations, simulations and ef-
fects, material rendering, light rendering, developer
tools, etc. Unreal Engine 4, released in 2014 as a
paid platform, has been available for free download
since 2015.

For this project, both tools far exceeded the require-
ments. However, we opted for Unity for its user-friendly
and intuitive interface, along with the ease of integration
with FMOD Studio for audio processing.

2.2 Audio engine

Both Unity and Unreal Engine incorporate their own au-
dio engines, although with limited features for very spe-
cific uses. If a higher audio quality is required, it is neces-
sary to resort to third-party libraries or engines to process
the sound. In the case presented, different ones have been

6580



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

evaluated, including Unity’s native plugin, Audio SDK, as
well as FMOD Studio or Wwise.

• Unity Audio Native Plugin SDK [9]. Composed
of 2 parts, the first requires the DSP (Digital Sig-
nal Processing) plugin to be implemented in Win-
dows as a .dll in C or C++. This means that it
must be recompiled specifically for each platform
on which you want to run the application to op-
timize its performance. The second part consists
of creating a user interface in C# to control the at-
tributes of the previously implemented plugin. It
incorporates an extension called Audio Spatializer
that allows to control the way the sound is emitted
from the source to the scene space.

• FMOD Studio [11]. It is a sound engine and au-
thoring tool for applications and video games de-
veloped by Fireflight Technologies, which allows
the loading, playback and processing of audio files
in different formats and platforms. It stands out for
its simplicity, power and easy integration with tools
such as Unity or Unreal Engine, in addition to in-
corporating a simple and intuitive user interface. It
facilitates the tasks of working with large projects
and the possibility of obtaining instant feedback
thanks to the fact that it allows listening and modi-
fying the processed audio in real time.

• Wwise [12]. It is a software developed by Audioki-
netic created mainly for sound engineers who want
to give a professional look to their applications,
such as video games, AR and VR applications or
simulations, incorporating spatial audio and virtual
acoustics in its latest updates. It is integrable with
graphics engines such as Unity or Unreal Engine
and, therefore, cross-platform. In addition, it in-
cludes a wide variety of plug-ins designed to meet
your specific needs.

In our case, for the selection of the audio engine,
FMOD Studio was one of the best options in terms of
simplicity and performance. Very good options such as
Wwise were also evaluated, but they consumed more
learning time as they were less intuitive to achieve similar
results in our application. On the other hand, both CSound
and Unity’s native SDK plugin were discarded since we
had the alternative of FMOD Studio, an easy-to-use and
highly compatible tool with Unity.

2.3 Voice synthesis

TTS (text-to-speech) systems have an enormous range
of uses. The first applications created that included this
technology served as reading systems for the visually im-
paired. Early systems were very mechanical sounding, but
were very well received by this community because it was
not always possible to read braille or have a real person
reading aloud. Today, systems incorporating TTS technol-
ogy improve and facilitate machine-person interaction for
this group. The main facet, and the one to which most im-
portance is attached, is the quality of the system. Speech
synthesis is composed of multiple factors that produce a
more or less acceptable result, factors such as segment-
ing, organizing, and decoding text, and converting that
text into a voice that must include phonetics, phonology,
and pronunciation.

In the TTS, the input is writing and the output is voice.
There are several models that treat information differ-
ently. In practice, systems are two or more combinations
of the different models, such as: common form model,
signal-to-signal, pipelined, text-as-language, grapheme-
phoneme model, full linguistic analysis, or full prosody
generation.

For the requirements of the project, we need a simple
TTS system, compatible with Unity, using a C# or Python
library that implements a speech synthesis system. This
system must also be able to run at runtime and save the in-
coming string in an.mp3 or.wav file format. Although the
library ’eSpeak NG’ [7] seemed to be a strong candidate,
there were problems in the implementation part and in the
final quality of the synthesized voice; we finally opted for
the ’pyttsx3’ Python library or module [13], which met all
necessary functional and quality requirements.

Figure 1. Design scheme

As shown in Figure 1, the final application is divided

6581



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

into three parts, the first one corresponds to the Python
part that allows us to generate or select the audio, which
will later be loaded with code and played in the Unity
scene as ’Programmer Sound’. Each snapshot is manu-
ally created by FMOD and then assigned to each rendered
zone. Each snapshot will include a convolution reverb
configuration with its coupled impulse response. They
are assigned to a single event and are triggered by the
source code in Unity. Each event is assigned a Program-
mer Sound that receives the audio through a script called
from its callback function [11]. When launching the Unity
application, all FMOD banks are loaded, with the snap-
shots and events previously compiled in FMOD Studio,
thanks to the integration of FMOD in Unity. After having
all the resources ready, just place them in the scene and
activate and deactivate the components as needed.

3. SYSTEM IMPLEMENTATION AND TESTING

3.1 Sound rendering in FMOD

In this implementation, the user does not directly interact
with the FMOD Studio application. All audio process-
ing is performed beforehand for later compilation and data
handling. Here, we will use FMOD to modify and prepare
the audio that will be played within a Unity scene (shown
in the lower part of Figure 1).

The process starts with the creation of a 3D event. In
this case, only one event is needed to play a single au-
dio clip. Different types of instruments can be assigned
to an event—ranging from those that play a single sound,
to those that can randomly choose from multiple sounds,
as well as programmer instruments and snapshot instru-
ments.

At first glance, a sound source that generates a single
sound and can be processed with effects might seem suffi-
cient. However, this type of sound source must be loaded
with a pre-imported audio file within the FMOD Studio
project. That audio file must then be compiled and stored
in a sound bank, which Unity will later access. In our
application, the audio file needs to be generated at run-
time, making the manual preparation process unfeasible.
For this reason, a programmer instrument is used, as it al-
lows audio playback with files generated during runtime.
At this stage, convolution reverb is applied as an audio
effect. Here, this convolution is done with the averaged
impulse responses obtained in each zone from the simu-
lation with ODEON software (Figure 2 shows the list of
returns and the configuration of one of them with the cor-

responding IR). The goal is to play an event with a sound
effect, such as the convolution with the impulse response,
that can change dynamically based on instructions from
Unity. To achieve this, the program is prepared with dif-
ferent “states” as reverberation zones.

Figure 2. FMOD Studio lits of ”returns” (up) and
configuration of a ”return” (down).

In FMOD Studio’s Mixer tab, under the routing sec-
tion, multiple signal returns have been created, each one
with the corresponding zone IR. Figure 3 shows in differ-
ent colors, the different reverberation zones associated to
the different IRs considered. Within the ”Source” group
that contains the event, send buses are added to duplicate
the signal and route it to these Returns, which ultimately
feed into the main output bus. Each Return has a unique
convolution reverb effect assigned, each associated with a
different impulse response. These impulse responses are
imported into the project as audio assets. This is where
snapshots come into play.

Since all Returns are routed through the master bus,
they would all play simultaneously by default. Snapshots
allow the creation of saved states for the mixer configura-
tion. In this case, snapshots are used to disable all but one
Return at a time, enabling only the one desired. As a re-
sult, a unique snapshot is required for each Return signal.
This process will be used in different zones by applying
an Attack-Relay process in the change of zone.

6582



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

Figure 3. Reverberation zones within the Theatre.

3.2 Scene rendering and multi-zone rendering in
Unity

Unity represents the final stage of the entire development
process—everything discussed previously converges here
(as shown in the upper-right part in Figure 1). This section
will follow the order in which the user encounters compo-
nents within the application.

Upon launching the application, the user first encoun-
ters the main menu (shown in Figure 4), which is imple-
mented as a Canvas GameObject containing text, drop-
downs, images, and buttons. This menu has an attached
script called MainMenu.cs, which manages all menu-
related functionality. It retrieves the selected value from
the dropdown and displays a corresponding image of the
exploration area using a ‘switch‘ statement. It includes
a method called ‘startApp()‘, triggered when the ”Start”
button is pressed. This method hides the main menu and
calls the ‘IniciarAplicacion()‘ function from the Game-
Manager object, passing the selected dropdown value
to determine the player’s starting position in the scene.
The GameManager object, as its name implies, over-
sees game administration. It contains a script responsible
for initializing all scene components—activating and po-
sitioning the player and initializing the sound source if it
hasn’t been initialized yet.

The sound source is represented by a GameObject
resembling a speaker, downloaded from the Unity As-
set Store as part of the “HQ Acoustic System by Next

Figure 4. Graphical User Interface for the location
selection.

Level 3D” (licensed under the Standard Unity Asset Store
EULA). This object includes two main scripts, Studio-
EventEmitter and ProgrammerSounds. The StudioEven-
tEmitter is a part of the FMOD integration package. This
script handles the emission of FMOD events from code
and manages playback parameters and metadata. A cus-
tom method, ‘ChangeSnapshot()‘, was added to this class,
allowing snapshots to be updated dynamically based on
player location. This method stops the current snapshot
before applying a new one. The ProgrammerSounds is
a modified version of an example script from FMOD’s of-
ficial documentation. It uses a callback function to re-
trieve the path to an audio file stored locally, which will
be played as an event.

So far, we have seen the construction and function
of the main menu and sound source, as well as how the
player and source are initialized by the GameManager.
The player character consists of a stretched cylinder with
a camera attached at the top. The parent GameObject,
named ”Player”, handles typical first-person movement. It
includes two key components, the Character Controller
(Unity native) that defines movement properties such as
climbable slope angle, stair height, and collision bounds,
and the Custom movement script which assigns values
for speed, gravity, and jump force.

The same project includes camera setup. However,
here the Unity’s default Audio Listener needs to be re-
placed with the FMOD Studio Listener to correctly pro-
cess FMOD audio events.

The application takes place in a virtual model of the
Teatre Principal de Valencia, which includes all five lev-
els of the real building (show in Figure 5). The orchestra
section contains 21 rows of red velvet-upholstered seats
with detailed metallic and wooden elements. A stage,
equipped with a speaker, and a wooden orchestra pit are

6583



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

also present, alongside detailed curtains. Each box seat
area mirrors the real structure in both interior and exterior
details—gold textures on the fronts and red velvet inside,
complete with chairs and dividers. The ceiling features a
grand chandelier with an ornate metallic design.

Figure 5. Navigation inside the Teatre Principal de
Valencia.

Lighting is carefully set up to mimic the theater’s am-
biance: two directional lights for general illumination,
two spotlights on the stage, two simulating the chande-
lier, and additional lights on the exterior of the balconies.
The rendered zones are used to manage audio transitions.
Each zone is a cube with a Box Collider and an ActivaS-
napshot.cs script. The collider is set as a trigger, so it
activates behavior rather than blocking movement.

Each zone receives parameters specifying which
snapshot to activate in the FMOD list of returns (in
Figure2 as a pair of row and seat) and the associated
anechoic sound source. These zones trigger snapshot
changes using Unity’s native functions like ‘OnTrigger-
Stay()‘, ‘OnTriggerEnter()‘, and ‘OnTriggerExit()‘. The
theater is filled with many of these zones, each linked to
a unique snapshot. Each snapshot is distributed based on

the properties of its impulse response, generally catego-
rized by row and seat number.

3.3 User tests

User testing involved presenting the application to a small
group of participants, who provided feedback from their
perspective. This external insight offered a broader view
of the application’s functionality. Each participant re-
ceived the application as a compressed file containing two
executables, without any instructions. Alongside the ap-
plication, a Google Form survey was provided to collect
feedback. The survey included aspects, such as:

• Age group, categorized into: Teen (under 21),
Young adult (21–35), Adult (36–59), and Senior
(60+)

• Audio playback method: Headphones and Loud-
speaker

• Sound realism: Very unrealistic, Slightly lacking,
Realistic and Very realistic

• 3D model quality: Very poor to Excellent (5-point
Likert scale)

• Lighting quality: Very poor to Excellent (5-point
Likert scale)

• Performance: Very low frame rate to No issues
(5-point Likert scale)

• Problem report section

• Additional comments

All responses were compiled into Table 1 averaging
the scores in Likert categories, rated on a scale of 1 to 5
(1 = worst, 5 = best). This scale assigns numerical val-
ues to responses and analyzes the average and response
trends to derive insights about user perception. These cat-
egories obtained four response options and were scaled
with a minimum value of 2 (in the case of performance).

Some participants provided qualitative feedback,
while others reported some issues. These issues were cat-
egorized into four main areas: user interface, controls,
scene design (i.e. two users were unsure how to exit the
application; one user had issues with movement controls),
and general application functionality. Some user reported
some comment about the model (i.e. “The character was
too tall” or “The place felt a bit overwhelming, almost
claustrophobic”).

6584



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

Table 1. Table summarizing the results of the survey.
Question Response Average

Age group 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

7%13%27%53%

NA

Audio playback method 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

43%57%

NA

Sound realism 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

73%27%

4.73

3D Model Quality 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

27%53%20%

4.06

Lighting Quality 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

33%60%7%

4.27

Performance 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

20%53%20%7%

3.87

These remarks suggest that some visual aspects of the
application significantly influenced user perception. As
users receive much of their information visually, visual
immersion plays a crucial role.

4. CONCLUSIONS AND FUTURE WORK

In conclusion, several insights can be drawn from the
completion of this project. Here it is shown a full Virtual
reality application combining multi-zone acoustic render-
ing, which is a highly comprehensive field with wide-
ranging applications across various modern technologies.
A clear example is the video game industry, which in-
creasingly focuses on creating immersive environments,
particularly in 3D games, where virtual acoustics and 3D
sound positioning play a significant role.

This application combines virtual acoustics with ar-
tificial intelligence (for anechoic speech generation from
text), although in a basic form. Major companies such
as Google and Amazon are actively investing in and sup-
porting the development of these technologies, recogniz-
ing their potential as part of an emerging market with a
promising future.

Regarding the user evaluation of the application, it
was perceived as a good application in terms of quality

(model and lighting), but the performance was not so good
because the model was a little bit heavy and the client
app had high hardware requirements (at least CPU i7 with
16GB RAM or GPU). Each of the Likert evaluated ele-
ments contributed multiplicatively to the user experience
— if one of them was undervalued, the overall experi-
ence was significantly affected. Additionally, user age ap-
peared to influence expectations. Younger users tended
to be more critical of graphics and lighting, likely due
to greater exposure to high-quality digital experiences.
Older users were less demanding in these areas. Audio
perception, however, was more influenced by the output
device (speakers vs. headphones) than by user age. Head-
phones typically offer superior spatial audio localization
due to their direct ear placement, outperforming speakers
in 3D audio rendering. Despite this, most users rated the
audio quality positively, regardless of the device used.

A possible direction for future development involves
expanding the number of buildings and heritage sites in
the city of Valencia. The primary goal would be to create a
virtual network of tourist attractions, allowing users to ex-
plore these locations remotely. Theatres and concert halls
would be particularly well-suited for such projects, as they
could use virtual demos to attract and inform prospective
visitors. Museums and other cultural institutions could

6585



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

also offer virtual previews of their collections.
With further investment and development, a multi-

player feature could be implemented, enabling virtual per-
formances of theatrical plays or concerts for remote au-
diences. In today’s context, projects of this nature are
increasingly relevant, and such cultural and tourist sites
would benefit greatly from offering immersive digital ex-
periences.

Another potential enhancement involves developing
voice synthesis, particularly by incorporating emotional
speech synthesis. Through specific techniques, it would
be possible to imbue synthetic voices with emotional ex-
pressiveness by controlling parameters such as pitch, in-
tensity, articulation, and automating these through ASR
or ADSR (Attack, Decay, Sustain, Release) envelopes.
This improvement would significantly enhance the appli-
cation’s quality, especially in the context of virtual theatre
performances.

Further improvements could focus on upgrading the
graphical component, including creating more detailed 3D
models and possibly migrating the application to a more
powerful engine such as Unreal Engine to achieve higher
visual fidelity. Additionally, switching the audio engine
—for instance, replacing FMOD with Wwise —could
provide new functionalities and more advanced audio ca-
pabilities.

5. ACKNOWLEDGMENTS

This research was funded by the Spanish Min-
istry of Science and Innovation/Spanish Research
Agency (MCIN/AEI) within the project Agriculture 6.0
with reference TED2021-131040B-C33 and the project
ECO4RUPA with reference PID2021-126823OB-I00,
funded by MCIN/AEI/ 10.13039/501100011033 and by
the European Union “NextGenerationEU”/PRTR. Also,
the authors would like to thank the Generalitat Va-
lenciana for the grant CIBEST/2023/101 and the grant
CIAEST/2022/91.

6. REFERENCES

[1] M. Vorlander, Auralization: Fundamentals of Acous-
tics, Modelling, Simulation, Algorithms and Acoustic
Virtual Reality. RWTHedition, Springer Berlin, Hei-
delberg, 2014.

[2] T. Lokki, “How many point sources is needed to rep-
resent strings in auralization,” 2017.

[3] J. Kang, F. Aletta, T. T. Gjestland, L. A. Brown,
D. Botteldooren, B. Schulte-Fortkamp, P. Lercher,
I. van Kamp, K. Genuit, A. Fiebig, J. L. Bento Coelho,
L. Maffei, and L. Lavia, “Ten questions on the sound-
scapes of the built environment,” Building and Envi-
ronment, vol. 108, pp. 284–294, 2016.

[4] S. Cecchi, A. Carini, and S. Spors, “Room Response
Equalization—A Review,” Applied Sciences, vol. 8,
no. 1, 2018.

[5] Fireflight Technologies, “FMOD,” 2021. https://
www.fmod.com/ (Visited 02/04/2025).

[6] P. Taylor, Text-to-Speech Synthesis. Cambridge Uni-
versity Press, 2009.

[7] M. Delille, R. Dunn, V.Aldisvi, J.Wilk, and
A.V.Hon, “ESpeak-ng.” https://github.com/
espeak-ng/espeak-ng/blob/master/
README.md (Visited 02/04/2025).

[8] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,
and K. Kavukcuoglu, “WaveNet: A Generative Model
for Raw Audio,” arXiv:1609.03499 [cs.SD], 2016.

[9] Unity Technologies, “Unity Environment.” https:
//unity.com/es (Visited 01/04/2025).

[10] Unreal Engine Technologies, “Unreal Engine Frame-
work.” https://www.unrealengine.com/
es-ES (Visited 01/04/2025).

[11] Fireflight Technologies, “Scripting Ex-
amples. Programmer Sounds.” https:
//www.fmod.com/resources/
documentation-unity?version=2.02&
page=examples-programmer-sounds.
html (Visited 02/04/2025).

[12] A. Inc., “Wwise documentation,” 2024.
https://www.audiokinetic.com/
en/library/edge/?source=Help&id=
welcome_to_wwise (Visited 01/04/2025).

[13] N. M. Bhat, “pyttsx3 - Text-to-speech x-platform,”
2021. https://pyttsx3.readthedocs.io/
en/latest/ (Visited 02/04/2025).

6586


