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ABSTRACT

Estimation of room geometry is crucial for realistic au-
dio rendering in virtual and augmented reality, as well
as for applications like sound field reconstruction. This
study introduces a deep learning-based method that in-
fers room geometry by directly predicting floorplan and
height maps from room impulse responses (RIRs). Un-
like traditional approaches that estimate room parameters
such as wall positions and room size, this segmentation-
based approach predicts a detailed geometric floorplan
map of a room, allowing it to handle irregular and com-
plex shapes, including curved walls. By utilizing high-
order reflections, the proposed method captures complex
geometric details, even those unobservable from the po-
sition of the audio device due to occlusion, which are
challenging to resolve with conventional methods rely-
ing on first-order reflections. The model’s exploitability
of high-order reflections is demonstrated through gradient
activation map visualizations and experiments with RIRs
limited to first-order reflections, highlighting their criti-
cal role in reconstructing complex geometries. Validated
on synthetic datasets, including Manhattan and Atlanta
layouts, the model demonstrates high accuracy in recon-
structing diverse room geometries, exhibiting robustness
in scenarios with indoor furniture and objects.

Keywords: Room geometry inference, room impulse re-
sponse, deep neural network

1. INTRODUCTION

Room geometry inference (RGI) is essential for vari-
ous audio applications, including immersive virtual and
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augmented reality (VR/AR) experiences, source separa-
tion, and sound field reconstruction. Accurate room ge-
ometry information can help simulate realistic room im-
pulse responses and thus enable immersive audio render-
ing [1]. Also, room geometry information can improve the
source separation and enhancement performance [2]. Al-
though vision-based RGI approaches using a panoramic
image of the indoor scene have shown effectiveness [3,4],
they struggle with non-line-of-sight (NLOS) walls that
are invisible due to occlusion by other walls. Moreover,
acoustically meaningful geometric information should be
captured for immersive audio rendering, highlighting the
need for acoustic-based RGI methods.

Acoustic-based RGI methods utilize room impulse re-
sponses (RIRs) to extract time-of-arrival (TOA) informa-
tion. Previous human-curated methods for acoustic-based
RGI mainly utilize TOAs of first-order reflections, which
provide distance to the walls [5–9]. Recently, learning-
based methods applying deep neural networks (DNNs)
have been proposed to overcome the constraints of con-
ventional human-curated methods, which generally rely
on the estimation of room or planar wall parameters using
TOAs of first-order reflections [10–12]. Although these
DNN-based techniques have shown promising RGI per-
formance, they cannot be applied to complex rooms with
curved walls. In this paper, we introduce our recent work
[13] tackling this challenge by reformulating the RGI task
as a pixel-level segmentation problem. This approach al-
lows us to estimate general room geometry with an arbi-
trary number of walls and more general wall shapes in-
cluding curved ones.

2. PROPOSED METHOD

In this work, we consider a 3D room geometry Y3D ∈
Rb×b×h, whose floor and ceiling are parallel. Such room
geometries can be decomposed into a 2D floorplan map
YLW ∈ Rb×b sampled by b pixels for length-width space
and a 1D height map yH ∈ Rh sampled by h pixels for
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Figure 1. Overview of the proposed model.

height space. Therefore, the acoustic-based RGI task can
be approached as a pixel segmentation problem of esti-
mating a 2D floorplan map and a 1D height map con-
taining binary values of 0 or 1 using acquired M -channel
RIRs X ∈ RM×N with temporal length N . The com-
pact acoustic device measuring RIRs is assumed to have
a loudspeaker at the center of a circular microphone array
with M microphones.

The proposed model employs an encoder–decoder ar-
chitecture to infer room geometry from RIRs as illus-
trated in Fig. 1. The encoder processes the multichannel
RIRs through the series of convolution blocks, progres-
sively doubling channel dimensions while halving feature
dimensions, to convert temporal and inter-channel infor-
mation into geometry-related features. The MA module
compresses the features using multiple pooling operations
controlled by the compression parameter ρ [14]. In this
study, average pooling (ρ = 1) and generalized mean
pooling (ρ = 3) are utilized to highlight the features ac-
tivated in global and partially local scales, respectively.
These compressed representations are then ensembled to
capture both local and global relations in the RIRs. The
decoder comprises two specialized components: a floor-
plan decoder and a height decoder. The floorplan decoder
consists of upsampling and convolution blocks with pro-
jected skip connections of expanded and reshaped features
from the MA module. The height decoder employs a sim-
pler structure with a single linear layer. This is because
first-order reflections can always be observed in the as-

Figure 2. Inferred floorplan and height maps of
Manhattan and Altanta layout rooms. The red dot
and orange line indicate the device position and the
GT room boundary.

sumed geometry with parallel floor and ceiling, and pre-
dicting the height map using these first-order reflections is
easier than generating the floorplan map. The pixel val-
ues of the predicted floorplan and height maps are con-
strained within the range [0, 1] by applying the Sigmoid
activation. During inference, the predicted maps are con-
verted into binary images by hard-thresholding the map
using the threshold of 0.5.

The network is optimized by mean squared error
(MSE) and dice loss. Dice loss enhances edge details
learning by measuring alignment between predicted and
ground truth (GT) layouts as

LLW
dice =

1

I

I∑
i=1

1− 2(ŷLW
i )TyLW

i

∥ŷLW
i + yLW

i ∥1
, (1)

where i is the index of room in the training dataset, and
yLW is the vectorized form of YLW. The total loss func-
tion is a joint loss given by L = LLW

MSE+0.3LLW
dice+LH

MSE.
Additionally, to address the inherent ambiguity in distin-
guishing floor and ceiling reflections with circular micro-
phone arrays, permutation invariant training (PIT) [15] is
implemented during height map loss calculation.
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3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Dataset

In this study, an audio device consisting of a circular mi-
crophone array with a radius of 5 cm, comprising six om-
nidirectional microphones and a centrally located loud-
speaker was utilized. The device was randomly positioned
at heights between [1, 1.5]m from the floor and within
70% of the floorplan of a given room. Multichannel RIRs
were simulated using a ray-tracing algorithm provided by
Pyroomacoustics [16]. Simulated RIRs have 1024 tempo-
ral samples at 8 kHz sampling rate. Background noises
(white Gaussian noises) were scaled and added to the
RIRs to achieve a signal-to-noise ratio (SNR) randomly
selected between [10, 20] dB. Various common acoustic
absorbing materials in [16] were randomly assigned to
floors, ceilings, and sidewalls for acoustic simulation.

To evaluate the model’s capability to infer general
and complex room geometries, we utilized five typical
room geometries (quadrilateral, pentagonal, hexagonal,
L-shaped, and T-shaped) and publicly available room ge-
ometry datasets containing diverse Manhattan and Atlanta
room layouts [4, 17]. Manhattan layout rooms consist
exclusively of walls intersecting at right angles, while
Atlanta layout rooms have more general and complex
shapes, including curved walls or walls intersecting at
oblique angles. To enhance the robustness of the model
to possible translation and rotation of the audio device, the
center of a floorplan (audio device position) was randomly
selected within the area scaled down to 70% of its floor-
plan and then randomly rotated within the range [0, 2π].
The final floorplan and height maps were mapped onto a
pixel grid of size b× b (b = 1024) and a pixel grid of size
h (h = 512), respectively, with 2 cm inter-pixel distance.

3.2 Experimental results

The RGI performance of the proposed model is evaluated
using intersection over union (IOU). IOU is calculated
based on voxel-level overlaps to assess the geometric sim-
ilarity between the predicted and GT room geometries as

IOU =
1

I

I∑
i=1

(ŷ3D
i )Ty3D

i

∥ŷ3D
i + y3D

i ∥1 − (ŷ3D
i )Ty3D

i

, (2)

where y3D is the vectorized form of Y3D.
The RGI performance of the proposed model across

five typical room tyeps is presented in Tab. 1. These five
room types include both convex (quadrilateral, pentago-
nal, and hexagonal) and non-convex (L- and T-shaped)

Table 1. RGI performance on five typical room types
Evaluation Metric

Convex Non-convex
Quadrilateral Pentagonal Hexagonal L-shaped T-shaped

IOU (%) ↑ 98.5 97.6 97.3 95.7 93.64
MSELW (×10−3) ↓ 2.9 3.2 3.5 7.2 10.65
MSEH (×10−3) ↓ 0.9 0.8 0.8 0.8 0.9

Figure 3. Visualization of temporal activation us-
ing Grad-CAM for (a) quadrilateral room and (b) T-
shaped room. The red dot and orange line denote the
device position and the GT room boundary.

shapes, achieving a high IOU of over 90% for all room
types. Additionally, the model demonstrates negligible
height map estimation errors (MSEH) regardless of the
room type.

Fig. 2 demonstrates inference results of the floorplan
and height maps of Manhattan and Atlanta layout rooms.
These examples indicate the proposed model captures the
overall layout of complex room geometries with small er-
rors around corners. Moreover, the inference result of
Fig. 2(d) shows that the model can accurately infer drasti-
cally curved geometry.

Exploiting high-order reflections is essential for in-
ferring NLOS walls. To verify that the proposed model
utilizes high-order reflections, we visualize temporal ac-
tivation maps of RIRs using gradient-weighted class acti-
vation mapping (Grad-CAM) [18]. For simple quadrilat-
eral rooms (Fig. 3(a)), the model highlights early temporal
regions dominated by low-order reflections. In contrast,
for T-shaped rooms with NLOS walls (Fig. 3(b)), stronger
activations are observed in later temporal regions around
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Figure 4. The inference results when the indoor ob-
jects are present. The left panels display a top view
of 3D models, and the right panels show the inferred
floorplan and height maps. The red dot and orange
line illustrate the device position and the GT room
boundary.

0.05 s corresponding to higher-order reflections. These re-
sults suggest that the proposed model effectively leverages
higher-order reflections to estimate complex room geome-
tries.

The RIRs used for training are simulated in empty
rooms. However, indoor objects such as furniture can
influence the RIRs. Figure 4 shows the 3D models of a
quadrilateral room (left) with dimensions (8, 6, 4)m con-
taining indoor objects, and their inference results (right).
These results indicate that objects shorter than the audio
device position (chairs and table) have minimal impact on
the inferred floorplan, while taller object (bookshelf) is
identified as wall. These results suggest that the proposed
model can infer room geometry even when the acquired
RIRs are affected by indoor objects.

4. CONCLUSION

This study presents a DNN-based RGI model using acous-
tic echoes. Unlike room parameter estimation approaches,
the proposed pixel segmentation approach has demon-
strated its ability to handle a wide range of room shapes.
Moreover, the experimental results visually demonstrate
that the proposed model effectively exploits high-order re-

flections to accurately reconstruct room geometries even
in cases where some walls are not directly visible from
the audio device position.
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