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ABSTRACT 1. INTRODUCTION

Previous numerical experiments have shown how a
complex-valued neural network can be trained on a sam-
pled recorded sound field to derive loudspeaker signals
which reproduce the target sound field. Furthermore,
some negative effects of spatial aliasing can be overcome
by first training the network with a higher density of spa-
tial samples than is used in the specification of the tar-
get sound field for reproduction. This amounts to increas-

ing the size of the output layer of the network relative to sound field comprising the sum of multiple sound fields

the input. This work investigates whether such a neural should be equal to the sum of the reproduction of the
network can also reproduce target sound fields consisting individual fields

of the linear superposition of a number of plane waves.
Numerical experiments are first carried out in which the
neural network is trained on sound fields containing only
single plane waves, and the reproduction of sound fields
containing multiple plane waves is compared to the sum
of reproductions of single plane waves. In a further nu-
merical experiment, the neural network is trained using
sound fields containing multiple plane waves. The repro-
ductions produced by this network are again compared to
the sum of reproductions of single plane waves. Finally,
the effect of using different network structures on linear
superposition is investigated.

Sound field reproduction methods aim to accurately
recreate a target acoustic pressure field using discrete
loudspeakers, based on sampling of the target field at
finite, discrete locations. A fundamental feature of acous-
tic pressure fields is that of linear superposition, which
states that sound fields can be combined by summation.
Effective sound field reproduction methods should also
follow this principle, meaning that the reproduction of a

Wave field synthesis [1] is one early method of sound
field reproduction. This method is based on Huygens’s
principle, which states that points on an incoming acous-
tic wave front can be modelled as secondary sources.
Therefore, by measuring the pressure and pressure
gradient at points along the wavefront, the propagation of
the wave front can be reproduced by secondary sources.
Furthermore, because the onward propagation of the wave
front is known, the pressure and pressure gradient can
also be extrapolated at other locations, allowing source
placement at locations other than the measurement. A
sound field can also be reproduced by deriving source
strengths which result in the least squared error between
the target and reproduced pressure at the location of
sensors [2,3]. This is an optimization process in which
the least squares cost function is minimized, and because
it involves matrix inversion a regularization parameter
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non-zero source strengths. This has been applied to sound
field reproduction in order to reduce the number of active
loudspeakers [4].

A feature of all aforementioned methods is spatial
aliasing. This occurs for reproduction of frequencies
above the spatial aliasing frequency, at which half a
wavelength is equal to the distance between sensors.
Therefore, increasing the density of sensors results in a
higher spatial aliasing frequency.

Recently, neural networks have been applied to sound
field reproduction problems. Recorded pressure signals
have been used as input features to a convolutional neural
network [5], which achieved reduced reproduction error
when compared to the LASSO and least squares pressure
matching method, particularly close to the spatial aliasing
frequency. Furthermore, in cases with irregular source
arrangements, the use of a convolutional neural network
resulted in reduced reproduction error above the spatial
aliasing when compared to the least squares pressure
matching method [6].

Rather than processing the real and imaginary parts
of complex acoustic pressure separately, a complex-
valued multilayer perceptron (cMLP) [7] is capable
of processing the real and imaginary parts of complex
numbers together. This ensures that phase information is
maintained throughout processing. Previous work [8] has
shown how a complex-valued multilayer perceptron can
effectively reproduce single-frequency plane-wave sound
fields. However, the ability of this neural network to
reproduce sound fields consisting of the linear superposi-
tion of multiple plane waves has not yet been investigated.

This paper investigates the ability of a cMLP to re-
produce sound fields consisting of two plane waves over
a range of angles of incidence. A neural network will
first be trained on single frequency single plane waves,
and another network on single frequency sound fields
consisting of two plane waves where a large number
of combinations of angles of incidence are used. The
reproduction of the second network will be compared to
the linear summation of reproductions produced by the
first network. Furthermore, the ability of the first network
to reproduce double plane waves is tested. This procedure
is then repeated with networks which are trained using
a greater number of sensors than are used to record the
sound field for reproduction. This corresponds to a larger
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output layer size of the neural network than input. The
details of the numerical experiments and neural networks
used are given in the Methods section. The Results
and Discussion section outlines the reproduction errors
of the different methods across frequency and angle of
incidence. Finally, the paper concludes by outlining the
main findings and their implications for future work.

2. METHODS
2.1 Experiment 1

The complex pressure of a single plane wave
Psingle(w, 0, z,y) with wavenumber vector kg(w,6)
and phase P, at location x(z, y) is calculated as

— o i(ko(w,0) X(z,)+2)

psingle(w707xvy) (D

where 6 is the angle of incidence of the plane wave and
the wavenumber vector ky(w,#) is calculated from the
wavenumber k(w) as

kg(w,8) = k(w) cos(0)i + k(w) sin()j )

where i and j are unit vectors in the z and y direction. The
complex pressure of a sound field pgoypie consisting of
two plane waves with angles of incidence 8 and 65, where
one plane wave has phase ®; and the other has phase ®,
is

pdouble(w, 9, x, y) = e_j(k91 (w,01)x(z,y)+P1)

+ei(koy (w,02)-x(w,y)+P2) )
In the first experiment, a complex-valued neural network
was trained using single-frequency sound fields calcu-
lated as in Eqn. (1) consisting of single plane waves with
angles of incidence evenly spaced between —180° and
180°. A set of 120 plane waves was used, giving an
angular resolution of 3°. The phase of each plane wave
in the data set was random. 20% of the sound fields
were randomly selected as validation data. The source
and receiver layout used for the simulated reproduction
was as follows. Four monopole sources were arranged
to describe the corners of a 4m x 4m square. Within
this region, 16 monopole receivers were arranged evenly
across the central 1 m x 1 m square.

The input layer of the neural network consisted of
16 neurons, corresponding to the 16 complex pressures
for each plane wave sampled at the 16 receivers. A single
hidden layer of size 200 neurons with a complex cardioid
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Figure 1. Geometry of sources, receivers and incident plane waves used in numerical experiments and archi-
tecture of neural network. Input data is target complex pressure p at sensors, corresponding to dense array in
experiments 1 and 2 and sparse array in experiment 3. Output data corresponds to reproduced complex pressure
at sensors p, taken from dense array in all cases. Cost function is calculated from p and p, taken from dense

array of sensors in all cases.

activation function was used. Finally, the output layer
consisted of 4 neurons and no activation function. The
output size corresponded to the 4 monopole sources,
and the outputs were multiplied by the matrix C of
transfer functions between the sources and receivers.
The cost function between the target and reproduced
pressures could then be calculated and back-propagated
through the network. The network was trained over
50 epochs using a batch size of 4. The mathematics
specifying the cMLP followed the process outlined by
Paul & Nelson [7] and the process to extend the network
to include acoustic propagation is the same as in the
previous paper [8]. Figure 1 illustrates the source and
receiver arrangement as well as the neural network
architecture used. Here, p is the complex pressures at
the I input sensors and P is the complex pressures at the
M output sensors. In the case of the first experiment,
both I and M were 16, meaning all 16 sensors were

used in both the training and the specification of the
sound field for reproduction. w®, a®  z(® are the
complex weights, activation function and output of the
hidden layer and w("), a("), z(1) are the complex weights,
activation function and output of the output layer. Figure
1 also shows how the angular coordinate system used to
define the angle of incidence of plane waves relates to
the source and receiver geometry used. For example, an
angle of incidence of 0° refers to a plane wave travelling
from the right of the sensor array to the left. The angles
of incidence used in the numerical experiments are shown.

Following training, the reproductions by the neural
network were compared to the target sound fields at 225
positions evenly distributed across the target 1m x 1m
square. Microphone noise was simulated by adding a
random value drawn from a Gaussian distribution with
zero mean and a standard deviation of 0.1 to the real and
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imaginary parts of the input data. This testing process
was repeated over 100 trials and the average error across
trials taken. In each trial, a reproduction of double plane
wave sound fields was calculated from the reproduction
of single plane wave sound fields by linear summation.
For example, the reproduction of a target sound field
containing two plane waves, one with angle of incidence
0° and the other with angle incidence 45° would be
calculated by adding together the reproduction of these
two plane waves individually. For each value of 61, a
particular random phase ¢; was applied, and a particular
random ¢o was applied for each 6». To generate the
necessary single plane wave reproductions with angles
of incidence 6> and phase ¢, a second network was
trained on a data set with these phase values. This was
because the network was not assumed to generalise
to reproduction of plane waves with phase different
to the training data. The mean-squared error of these
reproductions was then calculated across the 225 test
positions. The mean-squared error E; was calculated
from

(pg - f)g)H(pg - pg)

PP,

Eq “

1
S 2
where p,, and p, are vectors of the target and reproduced
pressure at the 225 points. The subscript g indicates that
this error is calculated from the ground truth at all 225
test positions. The error was normalised by the squared
magnitude of the target pressure pgpg. In the results, this
is referred to as the ”sum of singles” case.

The ability of this network to reproduce sound fields
consisting of two plane waves was also tested. In this
case, the input data consisted of the complex pressure
at the 16 sensors, calculated according to Eqn. (3). For
each of the 120 evenly spaced values of #, a sound field
was generated for values of 62 > 6;. The result of this
being that the input data did not include pairs of sound
fields for which #; in one was equal to 65 in the other.
For each value of 6; and 65 a particular random phase
¢1 and ¢o was applied. The double plane wave sound
fields were corrupted with noise as before and propagated
through the network trained on single plane waves to
derive an estimate of the complex pressure at the 225
target locations. The reproduction error was calculated
at these locations and the testing process repeated 100
times. This is referred to as the “trained on single” case
in the results.
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As a benchmark, optimal source strengths were also
calculated according to the least squared error method.
The source strengths were calculated using the 16 receiver
signals. The optimal source strengths v, were calculated
from
_cH —1H

Vo = [C7(w)C(w) + A1 C(w)p(w) (5)
where [ is a regularisation parameter with a value of
0.001. In the results for experiments 1 and 2, this is re-
ferred to as the least squared error” case.

2.2 Experiment 2

This procedure made use of the same source and receiver
arrangement as the previous numerical experiment, as
well as the same neural network structure. In this instance
a neural network was trained using input data consisting
of double plane wave sound fields. The double plane wave
sound fields were calculated in the same way as in Exper-
iment 1. As in the previous method, the average repro-
duction error was tested over 100 trials of double plane
wave data sets corrupted with noise. Again, the results
were compared to the least squared error solution using
the 16 receiver signals. This is referred to as the “trained
on double” case in the results section.

2.3 Experiment 3

In the final numerical experiment, a different neural net-
work structure was used. The input layer consisted of four
neurons, which corresponded to the complex pressure at
the four corner receivers for each sound field. The rest
of the network structure was unchanged so that all 16 re-
ceivers were used in calculating the cost function, mean-
ing that I = 4 and M = 16. Both the procedures outlined
in experiment 1 and experiment 2 were carried out again
using this network structure. In this case, the benchmark
methods were the least squared error method using the 4
receiver signals and the least squared error method using
the 16 receiver signals.

3. RESULTS AND DISCUSSION
3.1 Experiments 1 and 2

The overall reproduction error of each target sound field
is taken as the mean-average squared error across 225
points, evenly distributed across the 1 m x 1 m target re-
production area. The errors M SE are given in dB, calcu-
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lated from E such that
MSE = 10logy, (E) (6)

Averaging the reproduction errors across all sound fields
for each frequency gives an overall measure of the
performance of the methods as a function of frequency.
Figure 2 shows the mean squared error of each method as
a function of frequency. The general form of the results
demonstrate spatial aliasing. As frequency increases, the
mean squared error of the methods increases. Above the
spatial aliasing frequency (515 Hz), the error remains
high and consistent. Comparing the error of the four
methods as a function of frequency, there is little variation
between the four. Above spatial aliasing, the error
produced by network trained on single plane waves is
marginally lower, as is the least squared error method.

The effect of angle of incidence can be investigated
by plotting the reproduction error across angle of inci-
dence. Because each sound field consists of two plane
waves, for each plot the angle of incidence of the first”
plane wave is held constant whilst the “second” varies
between —180° and 180° at 120 angles of incidence.
Figure 3 shows the reproduction error of 160 Hz (left)
and 1000 Hz (right) plane waves with the first angle of
incidence being 45°.

In the 160 Hz case, the reproduction error of all
methods is low for angles of incidence of —135°, —45°,
45° and 135°. This is because at these angles the direction
of the plane waves are close to the location of a source.
In the same way, the error is high when the angle of
incidence is —180°, —90°, 0° and 90°, when the direction
is between sources. When the angle of incidence of
the two plane waves is similar, between around 0° and
90°, the reproduction error becomes very variable. This
suggests that the particular phase relation between the
two plane waves has a particularly strong effect in this
case. The reproduction error of the methods is similar
across angles of incidence. In the 1000 Hz case, the
overall reproduction error is higher as a consequence of
spatial aliasing. Furthermore, the regions over which the
reproduction error is high (where the angle of incidence
is between sources) is much wider in this case.

Figure 4 shows the reproduction error of 160 Hz (left) and
1000 Hz (right) plane waves with the first angle of inci-
dence being —180°, which corresponds to a direction be-
tween sources. Once again, the performance of the differ-
ent methods is similar. At 160 Hz, there is strong varia-
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Figure 2. Squared error of reproduction methods,
averaged across angles of incidence of plane waves,
as a function of frequency

tion as a result of the phase relation between the two plane
waves. In the 1000 Hz case, once again the reproduction
error is generally higher due to spatial aliasing. As with
the 45° case, the reproduction methods each had similar
reproduction errors. The similarity in performance be-
tween the neural network trained on single plane waves
and double plane waves is particularly significant. The
network trained on single plane waves required a smaller
training data set and was therefore substantially faster to
train, but still produced acceptable results. Therefore, the
network trained on single plane waves was able to gen-
eralise to the more complicated double plane wave case
for the sound fields studied in this paper. As an illustra-
tive example, Figure 5 shows the ground truth and repro-
duced sound fields for a 315 Hz double plane wave, which
is below the spatial aliasing frequency. The reproduced
sound fields are clearly similar between the three methods
shown. The network trained on single plane waves is able
to produce a sound field which is substantially different to
any single plane wave, demonstrating how the network is
able to generalise to cases which are substantially differ-
ent to the training data.

3.2 Experiment 3

Throughout this subsection, all neural networks have a
structure consisting of an input size of 4 and an output
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Figure 3. Squared error of reproduction methods for sound fields consisting of 160 Hz (left) and 1000 Hz (right)
plane waves. First wave has angle of incidence 45°, second plane wave is plotted across angle of incidence.
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Figure 4. Squared error of reproduction methods for sound fields consisting of 160 Hz (left) and 1000 Hz

(right) plane waves. First wave has angle of incidence -180°, second plane wave is plotted across angle of
incidence.
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Figure 5. Ground truth and reproduced sound fields
for an example 315 Hz double plane wave sound
field. Reproduction methods shown are neural net-
work trained on single and double plane waves, and
least squared error method.
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size of 16. In this way the networks were trained on all
16 sensor errors, but the estimations were based on only
the 4 input sensors. Figure 6 shows the reproduction error
at each frequency, averaged across all target sound fields.
These results demonstrate how the reproduction error
of the neural networks depends on the spatial aliasing
frequency of the input and output data. At low frequency,
the error of the neural networks is close to the least
squared error method with 4 inputs. This means that here
the performance is determined mostly by the input data.
However, above the spatial aliasing frequency of the 4
sensor array (172 Hz), the error of the neural networks
diverges from the least squared error method with 4
sensors and becomes closer to the least squared error
method with 16 sensors. At these higher frequencies, the
neural networks therefore achieve improved performance
as a result of being trained using more microphone
signals. Above the spatial aliasing frequency of the 16
sensor array (515 Hz), the error of the neural networks is
very close to the error of the least squared error method
with 16 sensors. At these frequencies, therefore, the
performance is mostly determined by the output (training)
data.
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Figure 6. Squared error of reproduction methods,
averaged across angles of incidence of plane waves,
as a function of frequency

Figure 7 shows the error of the reproduction meth-
ods as a function of angle of incidence of the second
plane wave, where the angle of the first 160 Hz (left) and
1000 Hz (right) plane wave is 45°. In the 160 Hz case,
the reproduction error of the neural networks is generally
between the error of the two least squared error methods,
but is closer to that of the least squared error method
with 4 sensors. Once again, the error of the methods
varies strongly depending on the phase relation between
the two plane waves. Around —45° and 135° the error
of the neural network trained on double plane waves is
lower compared to the other networks. At 1000 Hz, the
reproduction error of the neural networks once again lies
between the error of the two least squared error methods.
These results demonstrate the same features of spatial
aliasing seen in Figure 3 and Figure 4.

4. CONCLUSIONS

A complex-valued multilayer perceptron trained on sound
fields consisting of the linear superposition of two plane
waves gives results that are very similar to the linear
superposition of the reproductions of single plane waves
by a complex-valued multilayer perceptron trained on
sound fields consisting of single plane waves. A neural
network trained on single plane waves also results in
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Figure 7. Squared error of reproduction methods for sound fields consisting of 160 Hz (left) and 1000 Hz (right)
plane waves. First wave has angle of incidence 45°, second plane wave is plotted across angle of incidence.
Neural networks trained using 4 inputs and 16 outputs

similar reproduction error when reproducing sound fields
consisting of two plane waves. Therefore, a neural
network trained on these simpler sound fields is able to
generalise to some extent to more complicated sound
fields.

A neural network can be trained with a larger out-
put layer than input layer size. This means that a larger
number of microphone signals are used in training
than are used to record sound fields for reproduction.
This network structure results in performance which
is somewhere between the least squared error method
using each of the sensor arrangements. In particular,
between the spatial aliasing frequency of the two sensor
arrangements, the neural network achieves performance
which is notably better than the least squared error
method using fewer inputs.
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