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ABSTRACT* 

This paper aims to apply compressed sensing to in-air 

ultrasound imaging sensors to enhance efficiency in data 

acquisition and signal processing. In most state of the art 

sonar sensor systems, the utilized  beamforming 

techniques for array signal processing require each 

transducer element in a sensor array to be sampled at a 

rate exceeding the Nyquist criterion. This results in a 

substantial amount of data to be received, stored and 

processed. To address this challenge, this research uses the 

eRTIS, an Embedded Real-Time Imaging Sonar with 

enhanced real-time imaging capabilities as a case study, 

focusing on data acquisition and signal processing. 

Consequently, processing such a high volume of data can 

strain computational resources, necessitate significant 

storage capacity, and increase the system’s power 

consumption. Therefore, this paper investigates the 

application of data-reduction strategies such as 

compressive sensing which offers the advantage of 

reducing the amount of data needed without 

compromising quality,  to make eRTIS more efficient, 

high-performance, and manageable.  In this respect, L1 

minimization, OMP and SBL algorithms were selected for 

their demonstrated efficacy in handling sparse data and 

used to reconstruct the randomly-sampled signals. 

Furthermore, a MATLAB simulation model was 

developed to extract the results, which were analyzed 

extensively. 
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1. INTRODUCTION

We are interested in investigating the compressed sensing 

paradigm in the context of in-air 3D ultrasonic imaging. 

This technique is widely used in various fields, including 

in-air 3D object detection, industrial inspection, 

monitoring of harsh environment, autonomous robotic 

navigation, localization and mapping systems based on 

ultrasound waves. 

The eRTIS is an Embedded Real-Time Imaging Sensor 

developed by the research group in the CoSys lab, 

University of Antwerp, Belgium [1]. It signifies a major 

advancement in ultrasonic technology by advancing 3D 

object detection in-air. Moreover, modern sonar systems 

tend to use MEMS microphone arrays [2]. In many cases, 

these systems involve phased array configurations with 

many receive elements [3]. However, traditional time-

domain beamforming techniques require each transducer 

element in a sensor array to be sampled at a rate exceeding 

the Nyquist criterion. This generates substantial amounts 

of data, which must be received, stored and processed, 

posing considerable challenges in terms of computational 

resources, storage capacity and power consumption. 

This paper aims to optimize the signal processing flow in 

eRTIS by reducing the data load and computational 

complexity associated with 3D image processing, which is 

crucial for enhancing performance and boosting the 

efficiency of acoustic imaging systems. Moreover, the 

focus is on implementing data reduction strategies using 

the compressed sensing method to acquire and reconstruct 

microphone signals by exploiting their sparsity. 

Furthermore, data acquisition is an essential step in the 

processing pipeline of an in-Air Imaging Sonar Sensor. 

However, several data acquisition techniques that have 

been proposed suffer from high processing time, hardware 

cost and computational complexity [4]. 
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Compressed sensing (CS) is a promising signal processing 

technique which enables the acquisition and 

reconstruction of sparse and compressible signals from 

severely under-sampled measurements than traditionally 

required by the Nyquist-Shannon sampling theorem. This 

approach exploits the sparsity of signals in a specific 

domain, allowing for efficient data acquisition and 

significant reductions in sampling rates [5].  Besides, CS 

achieves this by finding solutions to under-determined 

linear systems, making it an emerging technique in signal 

and image processing for data compression and recovery. 

Theoretically, it has been guaranteed that recovery of the 

information is possible if the original signal and the 

measurement matrix satisfy certain mathematical 

conditions [6].  

Compressed sensing is a widely used data reduction 

strategy that reduces computational complexity while 

maintaining system performance. This approach’s 

effectivity depends on different parameters including 

sparsity of the signal, measurement matrix, reconstruction 

algorithm, noise levels, coherence of the measurement 

matrix, sampling rate. Thus, the quantity of measurements 

required to reconstruct a signal is determined by its 

sparsity instead of its bandwidth [7]. In this paper, three 

reconstruction algorithms were investigated and compared 

in performance. 

Compressed sensing (CS) has found applications in 

various domains due to its ability to acquire and 

reconstruct signals efficiently. In medical imaging, it is 

extensively used in magnetic resonance imaging (MRI) to 

reduce scan times while maintaining image quality [8]. 

Similarly, in astronomy, it helps process astronomical 

data, enabling the reconstruction of high-resolution 

images from fewer measurements [9]. CS is also applied 

in wireless communications for channel estimation and 

spectrum sensing, improving the efficiency of wireless 

networks [10]. Additionally, in geophysics, it aids in 

reconstructing subsurface images from seismic data, 

which is crucial for oil and gas exploration [11]. 

Specifically, in the context of 3D sonar, CS is valuable for 

synthetic aperture sonar (SAS) imaging, allowing the 

reconstruction of high-resolution 3D images from fewer 

measurements, benefiting underwater exploration and 

mapping [12].  Furthermore, it has been effectively 

utilized in 3D ultrasonic imaging to enhance the detection 

and localization of air leaks in pressurized air systems. 

Steckel and Peremans demonstrated this approach by 

employing a random, sparse array of microphones and CS 

algorithms to accurately localize air leaks in two 

dimensions, thereby improving the precision and 

reliability of ultrasonic imaging systems [13]. 

Prior to compressed sensing (CS), various data reduction 

strategies were used in ultrasonic images to manage 

processing time. Hardware costs and computational 

complexity were handled by interpolating sub-frequency 

bands using Discrete Wavelet Transform (DWT), which 

selectively decomposes the ultrasonic signal into different 

frequency bands. Consequently, data volume can be 

reduced by eliminating some sub-bands [14]. Full Matrix 

Capture (FMC) is a data acquisition method used in 

ultrasonic imaging to capture every possible transmit-

receive combination for a given ultrasonic phased array 

transducer. While FMC generates large data volumes, 

post-acquisition strategies are required to handle and 

process this data effectively [15]. Thus, data is selectively 

sampled in the lateral axial direction to reduce the number 

of active access elements and amount of data collected 

[16]. In comparison, compressed sensing is superior to 

these methods; taking advantage of signal sparsity to 

reconstruct high-quality images from significantly fewer 

samples. This results in faster data acquisition, reducing 

hardware requirements and complexity in calculations 

[17]. 

The rest of this paper is structured as follows: firstly, an 

overview of the conventional signal processing flow in 

eRTIS is introduced. Building on this, the research 

focuses on optimizing signal acquisition and digital 

processing algorithms in the CoSys-lab eRTIS sensor 

operating in harsh environments such as mining, 

agriculture, construction equipment and other similar 

scenarios where the optical techniques often fail. With the 

introduction of dense sensor arrays in ultrasound imaging, 

data transfer rate and data storage can become a 

bottleneck in system design.  Secondly, we introduce 

compressed sensing to reduce the amount of sampled 

channel data. Consequently, we propose a new approach 

based on compressed sensing in data acquisition. In 

addition, compressed sensing provides a significant 

computational savings during on-chip implementation. 

Therefore, it is considered the most feasible technique to 

boost the performance. Thirdly, three sparse recovery 

algorithms are implemented, leveraging the sparsity of the 

signal received at each transducer element to reduce 

sensor complexity while maintaining imaging quality.  

Finally, the study’s validation is demonstrated through a 

simulation model in MATLAB where proof-of-concept 

implementations are demonstrated. 
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2. CONVENTIONAL SIGNAL PROCESSING 

FLOW IN ERTIS: 

 

The eRTIS system is an active airborne ultrasound sensing 

utilizes ping-based processing across multiple stages to 

achieve 3D imaging. A detailed overview of the 

processing pipeline of the eRTIS is shown in Figure (1) 

These steps collectively transform the raw acoustic data 

into high-resolution images that can be used for detailed 

analysis and interpretation.  

 

 
a) Architecture of embedded real time imaging sonar. 

 

 
b) The CoSys-Lab eRTIS sensor [8] in a custom 

enclosure. 

 

Figure 1. a) A schematic overview of the components 

used in this paper. The eRTIS front-end is by default 

connected to the eRTIS backend, which will handle 

the microphone data. A USB connection between the 

eRTIS backend and the Jetson Nano is used to 

transfer data to Jetson Nano’s memory, where the 

measurements can be stored. b) The CoSys-Lab 

eRTIS sensor [1] in a custom enclosure. 
 

In the front-end of the eRTIS, the Sens Comp 7000 

transducer [18] emits a broadband ultrasonic chirp ranging 

from 20 kHz to 80 kHz, which reflects off objects in the 

field of view (FOV) environment.  Subsequently, each 

MEMS microphone in the 32-Omnidirectional 

microphone array simultaneously and individually 

receives the reflected echoes. Due to the broad distribution 

of acoustic energy in the frontal hemisphere and the near 

omnidirectional nature of the microphones, the sensor's 

field-of-view covers the frontal hemisphere [19][20].  

These reflected signals are modulated using a pulse 

density modulator (PDM) integrated into the MEMS 

microphone. Afterward, these Mono PDM signals 

  are demodulated using a decimation stage 

that converts one-bit PDM microphone signals to 16-bit 

PCM format , which in turn serves as the 

input to the back-end of the eRTIS.  

It is important to highlight that the microphone signals are 

require at each transducer element in a sensor array to be 

sampled at a rate higher than the Nyquist criterion, 

resulting in an extensive  amount of data to be received, 

stored, and processed.  Therefore, sampling 32 elements 

of a microphone array at 4.5 MHz, while respecting the 

Nyquist criterion, results in a data rate of 144 Mbps.  

Alongside the decimation stage performed in the Field-

Programmable Gate Array (FPGA) at the front-end, these 

signals are  processed using a bandpass filter to limit the 

signals’ frequency to the desired range. The decimation 

stage utilizes an IIR 6th order Butterworth low pass filter 

with a cutoff frequency of 100kHz. Once filtered a 

decimation of factor 10 is used, which effectively gets us 

the data sampled at 450kHz The filtered signals 

.    

In the back-end of the eRTIS, the initial signal processing 

step involves a matched filter that enhances the signal-to-

noise ratio and compresses the emitted pulse into its auto-

correlation function, resulting in the pulse compressed 

signal (see Figure 2). 

                                 (1) 
 

In Eqn. (1),  represents the inverse Discrete Fourier 

Transform (DFT) applied to the discrete Fourier 

transforms of the signal from the   microphone 

channel,  , and the complex conjugate of the 

Fourier transform of the emitted signal  . The 

subsequent step involves the beamformer, which functions 

as an acoustic lens directed towards a specific angle   in 

the frontal hemisphere. Here,  , where  is 
the azimuth angle and    is the elevation angle. 

The matched filter is designed to align with the shape of 

the transmitted ultrasound pulse, which is known a priori, 

and peaks when it detects the desired signal. This peak 

helps separate the wanted reflection from background 

noise. Moreover, the matched filter output is a compressed 
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version of the original signal, which reduces its duration. 

This compression makes it easier to distinguish between 

closely spaced reflectors, enhancing the signal-to-noise 

ratio (SNR) and improving resolution. 

The microphone signals are then combined with a 

conventional delay-and-sum (DAS) beamforming 

algorithm that processes the digital signals to introduce 

directionality in the reception stage. Consequently, the 

array is digitally steered in predefined desired directions 

of arrival in post processing technique, rotating in the 

horizontal plane ranging from -90° to 90° in steps of 2°. 

Eqn. (2) describes how the beamformer operates. 

Currently, a delay-and-sum (or time-domain Bartlett) 

beamformer is used due to its simplicity and robustness 

against calibration errors. However, more advanced 

beamformers can be implemented to achieve better peak-

to-sidelobe ratios in the imaging point spread function 

[21]. It is important to note that most data-dependent 

beamformers require multiple data snapshots, which may 

not always be feasible in robotic applications where the 

sensor moves quickly through the environment relative to 

the sonar sensor's sampling rate of 10-15Hz. To address 

the limitations of data-dependent beamformers, sparsity-

based segmentation techniques of the acoustic images can 

be used to improve object localization accuracy, as 

previously demonstrated in [22]. For the time-domain 

Bartlett beamformer, time-delays  are added to each 

channel to compensate for the angle-dependent 

differences in time-of-arrival caused by the array's 

geometry.     

                          (2) 

Where   is a weight assigned to the channels are 

selected using a Gaussian window over the array aperture 

to minimize sidelobe levels in the point spread function 

(PSF) and  are the direction dependent delays given 

by the Bartlett Beamformer [21].  

The final step involves performing envelope detection for 

each direction , where the envelope of the beamformed 

signal is calculated by full-wave rectification and low-pass 

filtering. 

                                     (3) 

 
Where  is a low-pass filter (2nd order Butterworth filter, 

cutoff frequency = 1kHz).  The signal  contains the 

envelope of the beamformed signal in direction . 

This process generates a collection of range-energy 

profiles .  These range-energy profiles from 

the desired directions are then combined into a single 

image, referred to as the Energyscape (ES) of the 

environment [23]. 

Finally, envelope detection stage extracts the energy-

profile in function of range and several of these range-

energy profiles are combined to form an acoustic image, 

called the Energyscape.  That is to say,  this stage is 

performed to represent the reflector distribution for each 

particular direction, with the time axis representing the 

range for that direction. These stages are all necessary to 

create acoustic images, which are 2D or 3D images that 

provide the intensity, range, and direction for each 

detected reflector. 

 

 (3) 
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Figure 2. Classical  diagram of the digital signal 

processing steps in eRTIS,  the process begin with 

the raw microphone signals , which are 

pulse density modulated (PDM) signals oversampled 

at 4.5 MHz. These signals then are then demodulated 

to obtain the full ultrasonic signals of the N channels 

, represented as 16-bit PCM data 

sampled at 450 KHz, filtered by IIR and decimated 

by a factor of 10. The filtered signals . 

are within the target frequency range of 20 KHz to 

80 KHz.  Next, in pre-processing stage,  the discrete 

time Fourier transform is applied to obtain  

. A matched filter is then used to find 

the actual reflections of the emitted signal, resulting 

in . Delay-and-sum beamforming 

creates a spatial filter for every direction of interest, 

producing  . Finally, envelope 

detection is used to clean up the spatial image, 

yielding the Energyscape signals , 
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which correspond directly to the finished acoustic 

image.  

3. COMPRESSIVE SENSING IN IN-AIR 3D 

SONAR SYSTEM:  

In a MEMS microphone, a digital transducer converts the 

acoustic signal to an electrical signal, then an internal 

sigma-delta modulator converts the electrical analogue 

signal to a digital pulse density modulated (PDM) 

bitstream with over sampling rate (OCR=10). For 

Ultrasonic applications, the PDM bitstream is delivered at 

a sampling rate typically in the 1MHz to 3MHz range, 

while the audio or baseband signal is supposed to be in the 

20 Hz to 20 kHz range. The modulator’s order depends on 

the vendor and they are generally 2nd or higher order. The 

modulator shapes the quantization noise at higher 

frequencies while the audio signal remains in the 

baseband range. This quantization  noise shaping is 

performed by analogue feedback and oversampling stages 

within the modulator with the intention of increasing the 

signal-to-noise ratio (SNR) at baseband frequencies [24].  

Pulse Density Modulation (PDM) signals themselves are 

not inherently sparse in the time domain because they are 

oversampled one-bit signals that represent the density of 

pulses corresponding to the amplitude of the original 

signal. Furthermore, one-bit data will cause high 

quantization noise, resulting in a flat spectrum that is not 

sparse. Only after low-pass filtering and decimation can 

the signal become sparse. Therefore, Pulse Coded 

Modulation (PCM) can exhibit sparsity in frequency 

domain or a transformed domain, depending on the nature 

of the original signal and the modulation process. 

3.1 The theoretical  fundamental of compressive 

sensing: 

The traditional data acquisition techniques are based on a 

set of measurements sampled at the Nyquist rate by an 

Analog/Digital Converter (ADC), which can result in a 

very high processing time, hardware cost, and 

computational complexity [26]. The Nyquist-Shannon 

sampling theorem asserts that to accurately and uniquely 

reconstruct a signal, the sampling rate must be at least 

double the highest frequency in the signal. Moreover, this 

theorem remains valid; if a single unit of data in a white 

noise signal is missed, the original signal cannot be 

recovered [25]. This is because white noise is inherently 

non-sparse, as it includes all frequencies with equal 

intensity, making it impossible to represent with just a few 

non-zero coefficients. In contrast, ultrasonic signals in the 

eRTIS are not white noise. A particularly significant 

aspect of compressed sensing is the underlying matrix 

computation. A raw signal can be regarded as a vector  

with numerous components. We assume that  can be 

represented as a linear combination of specific basis 

functions: 

                                                                            (4) 

This basis must be suited to a particular application. In the 

Eqn. (4) , ,  is the discrete cosine transform. We also 

assume that most of the coefficients  are effectively zero, 

so that  is sparse. Therefore,   can be either exactly -

sparse in the time domain or approximately sparse in a 

transform domain, such as Fourier basis, Discrete Cosine 

transform and wavelet, etc. 

An exactly -sparse signal is defined as    

whereas the approximately sparse signal  is 

defined as . This implies that most of signal 

information is contained in the  coefficients of the signal 

 transformed representation. We represent   norm of a 

vector  as: 

 

                                                        (5) 

In this paper, we refer  to   as a few random samples of 

, so  is a subset of the rows of the identity operator. But 

more complicated sampling operators are possible. To 

reconstruct the signal, we must try to recover the 

coefficients by solving the following equation: 

                    , where                                (6) 

Once we have the coefficients, we can recover the signal 

itself by inverse transform domain. Since this is a 

compression,  is rectangular fat matrix, with many more 

columns than rows. Computing the coefficients  involves 

solving an underdetermined system of simultaneous linear 

equations, .  In this situation, there are many more 

unknowns than equations. The key to the almost magical 

reconstruction process is to impose a nonlinear 

regularization involving the norm. 
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3.2-The compressed sensing for acquisition in the 

eRTIS: 

The current time-domain beamforming techniques require 

the signal at each transducer-element to be sampled at a 

rate higher than the Nyquist criterion, resulting in an 

extensive amount of data to be received, stored and 

processed. For example, sampling 32 elements of a 

microphone array by 4.5MHz will end up by 144 Mbps.  

As shown in Figure (3) and (4), compressive sensing 

involves two main processes: first part is sparse 

representation and measurement , and second parts is 

sparse signal recovery algorithm (SSR) [27]. Firstly, a 

measurement matrix called sensing matrix  should be 

used to collect the information and simultaneously 

compress signals, which can be shown as the part 

associated with compressing and sampling with low-

speed. Secondly, the recovery of signals after 

transmitting and storage should be accomplished by 

solving an optimization problem with effective 

algorithms. 

 
Figure 3. Compressive sensing processes has two 

primary components: compressive sampling (CS) 

and sparse signal recovery (SSR). 
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Figure 4. Signal processing of the eRTIS 

incorporates compressed sensing applied at the 

backend which comprises two primary components: 

compressed sampling (CS) and sparse signal 

recovery (SSR). 

3.3- Spare Reconstruction Algorithms:  

Compressive sensing relies on mathematical algorithms 

solving the problem of data reconstruction from a 

significantly reduced number of measurements by 

exploring the properties of sparsity and incoherence. 

Therefore, this concept includes optimization procedures 

aiming to provide the sparsest solution in a suitable 

representation domain. Moreover, to find the sparse 

solution for the underdetermined linear system, the  
norm optimization problem should be solved. This is a 

non-deterministic polynomial-time hard (NP-hard) 

combinatorial search problem, which is a prohibitively 

expensive operation. However, -minimization does not 

have an efficient algorithm because the objective function 

is not convex. Therefore, an  approximate solution has to 

be investigated.   

There are two fundamental approaches for reconstructing 

from CS measurements: convex optimization and greedy 

search algorithms. If the measurement matrix obeys the 

restricted isometric property (RIP) with a sufficiently 

small constant and there is no measurement noise, it is 

possible to exactly recover signals from the measurement 

vector  using convex optimization [27]. In this paper, a 

standard Gaussian distributed sensing matrix will be used. 

The application of  norm minimization technique as 

recovery algorithm was firstly evaluated and then 

compared  to two other competitive algorithms.  

On the one hand, the sparse recovery approximation using 

conversion of  norm minimization to linear 

programming has been implemented on our eRTIS 

platform using MATLAB simulation. The number of 

measurements, M, sufficient for successful recovery via 

the L1 minimization is well known to be:  

                                                    (7) 

The implementation of the selected compressed sampling 

and the signal reconstruction algorithms was performed in 

MATLAB.  The results were then compared with each 

other and presented in Figure (5) and 6). It is important to 

note that the implementation of the PDM to PCM 

conversion including filtering stage was performed using 

an FPGA in the front end. Therefore, the compressed 

sampling is done  ultimately in  the software at the 

backend.  In the latest version of the eRTIS a Jetson 

Nano from Nvidia is used process the signals.  
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Figure 5.  Reconstruction error versus the number 

of remaining samples after compression for L1 

minimization, OMP, and SBL algorithms. 

 

Figure 6. Reconstruction time versus the number of 

remaining samples after compression for L1 

minimization, OMP, and SBL algorithms.   

4.  DISCUSSION AND CONCLUSION: 

In this paper, we compared three sparse recovery 

algorithms from the convex relaxation, greedy, and 

Bayesian categories. We used two metrics: recovery error 

and recovery time. Figure (6) shows recovery time, 

which  is a quantitative metric that assesses the duration 

required by each algorithm to accurately resolve the 

sparse recovery problem. The full dimensional signal has 

12,500 samples. As shown in Figure (5), Bayesian 

techniques and Orthogonal Matching Pursuit show better 

performance in terms of recovery error which decreases 

to reach nearly  0% when the number of measurements 

exceeds 600 samples, which represents just 5% out of 

the full dimensional signal. 

Greedy techniques are known for their speed, making 

them the fastest among the methods. This is evident from 

the very small reconstruction time in figure (6). On the 

other hand, convex relaxation techniques are very efficient  

in minimizing recovery errors, providing superior 

performance in this aspect. Bayesian techniques have a 

balance, offering both low recovery error and short 

recovery time, making them well-rounded in their 

performance. The ultrasound received signals in the 

eRTIS have a correlation structure. The reconstruction 

efficiency of the algorithms deteriorates if the correlation 

structure is ignored. This aspect has been ignored by most 

state-of-the-art algorithms. 

Sparse Bayesian Learning (SBL) methods take advantage 

of the signal correlation structure to make significant 

improvements in reconstruction efficiency. It is reported 

in the literature [28] that the exploitation of the correlation 

structure with the sparsity of the non-sparse ultrasound 

signals may significantly increase the efficiency of 

reconstruction. It is demonstrated in Figure (6) that the 

SBL algorithms obtain the highest speed to reconstruct 

sparse signals.  

Future work will involve the application of steerable 

compressed sensing. This technique allows for sparse 

scanning, eliminating the need to scan the field 

thoroughly. Instead, we can randomly scan the field for 

obstacles. 
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