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ABSTRACT

This paper aims to apply compressed sensing to in-air
ultrasound imaging sensors to enhance efficiency in data
acquisition and signal processing. In most state of the art
sonar sensor systems, the utilized beamforming
techniques for array signal processing require each
transducer element in a sensor array to be sampled at a
rate exceeding the Nyquist criterion. This results in a
substantial amount of data to be received, stored and
processed. To address this challenge, this research uses the
eRTIS, an Embedded Real-Time Imaging Sonar with
enhanced real-time imaging capabilities as a case study,
focusing on data acquisition and signal processing.
Consequently, processing such a high volume of data can
strain computational resources, necessitate significant
storage capacity, and increase the system’s power
consumption. Therefore, this paper investigates the
application of data-reduction strategies such as
compressive sensing which offers the advantage of
reducing the amount of data needed without
compromising quality, to make eRTIS more efficient,
high-performance, and manageable. In this respect, L1
minimization, OMP and SBL algorithms were selected for
their demonstrated efficacy in handling sparse data and
used to reconstruct the randomly-sampled signals.
Furthermore, a MATLAB simulation model was
developed to extract the results, which were analyzed
extensively.
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strategies.
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1. INTRODUCTION

We are interested in investigating the compressed sensing
paradigm in the context of in-air 3D ultrasonic imaging.
This technique is widely used in various fields, including
in-air 3D object detection, industrial inspection,
monitoring of harsh environment, autonomous robotic
navigation, localization and mapping systems based on
ultrasound waves.

The eRTIS is an Embedded Real-Time Imaging Sensor
developed by the research group in the CoSys lab,
University of Antwerp, Belgium [1]. It signifies a major
advancement in ultrasonic technology by advancing 3D
object detection in-air. Moreover, modern sonar systems
tend to use MEMS microphone arrays [2]. In many cases,
these systems involve phased array configurations with
many receive elements [3]. However, traditional time-
domain beamforming techniques require each transducer
element in a sensor array to be sampled at a rate exceeding
the Nyquist criterion. This generates substantial amounts
of data, which must be received, stored and processed,
posing considerable challenges in terms of computational
resources, storage capacity and power consumption.

This paper aims to optimize the signal processing flow in
eRTIS by reducing the data load and computational
complexity associated with 3D image processing, which is
crucial for enhancing performance and boosting the
efficiency of acoustic imaging systems. Moreover, the
focus is on implementing data reduction strategies using
the compressed sensing method to acquire and reconstruct
microphone signals by exploiting their sparsity.
Furthermore, data acquisition is an essential step in the
processing pipeline of an in-Air Imaging Sonar Sensor.
However, several data acquisition techniques that have
been proposed suffer from high processing time, hardware
cost and computational complexity [4].
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Compressed sensing (CS) is a promising signal processing
technique ~ which enables the acquisition and
reconstruction of sparse and compressible signals from
severely under-sampled measurements than traditionally
required by the Nyquist-Shannon sampling theorem. This
approach exploits the sparsity of signals in a specific
domain, allowing for efficient data acquisition and
significant reductions in sampling rates [5]. Besides, CS
achieves this by finding solutions to under-determined
linear systems, making it an emerging technique in signal
and image processing for data compression and recovery.
Theoretically, it has been guaranteed that recovery of the
information is possible if the original signal and the
measurement matrix  satisfy certain mathematical
conditions [6].

Compressed sensing is a widely used data reduction
strategy that reduces computational complexity while
maintaining system performance. This approach’s
effectivity depends on different parameters including
sparsity of the signal, measurement matrix, reconstruction
algorithm, noise levels, coherence of the measurement
matrix, sampling rate. Thus, the quantity of measurements
required to reconstruct a signal is determined by its
sparsity instead of its bandwidth [7]. In this paper, three
reconstruction algorithms were investigated and compared
in performance.

Compressed sensing (CS) has found applications in
various domains due to its ability to acquire and
reconstruct signals efficiently. In medical imaging, it is
extensively used in magnetic resonance imaging (MRI) to
reduce scan times while maintaining image quality [8].
Similarly, in astronomy, it helps process astronomical
data, enabling the reconstruction of high-resolution
images from fewer measurements [9]. CS is also applied
in wireless communications for channel estimation and
spectrum sensing, improving the efficiency of wireless
networks [10]. Additionally, in geophysics, it aids in
reconstructing subsurface images from seismic data,
which is crucial for oil and gas exploration [11].
Specifically, in the context of 3D sonar, CS is valuable for
synthetic aperture sonar (SAS) imaging, allowing the
reconstruction of high-resolution 3D images from fewer
measurements, benefiting underwater exploration and
mapping [12].  Furthermore, it has been effectively
utilized in 3D ultrasonic imaging to enhance the detection
and localization of air leaks in pressurized air systems.
Steckel and Peremans demonstrated this approach by
employing a random, sparse array of microphones and CS
algorithms to accurately localize air leaks in two
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dimensions, thereby improving the precision and
reliability of ultrasonic imaging systems [13].

Prior to compressed sensing (CS), various data reduction
strategies were used in ultrasonic images to manage
processing time. Hardware costs and computational
complexity were handled by interpolating sub-frequency
bands using Discrete Wavelet Transform (DWT), which
selectively decomposes the ultrasonic signal into different
frequency bands. Consequently, data volume can be
reduced by eliminating some sub-bands [14]. Full Matrix
Capture (FMC) is a data acquisition method used in
ultrasonic imaging to capture every possible transmit-
receive combination for a given ultrasonic phased array
transducer. While FMC generates large data volumes,
post-acquisition strategies are required to handle and
process this data effectively [15]. Thus, data is selectively
sampled in the lateral axial direction to reduce the number
of active access elements and amount of data collected
[16]. In comparison, compressed sensing is superior to
these methods; taking advantage of signal sparsity to
reconstruct high-quality images from significantly fewer
samples. This results in faster data acquisition, reducing
hardware requirements and complexity in calculations
[17].

The rest of this paper is structured as follows: firstly, an
overview of the conventional signal processing flow in
eRTIS is introduced. Building on this, the research
focuses on optimizing signal acquisition and digital
processing algorithms in the CoSys-lab eRTIS sensor
operating in harsh environments such as mining,
agriculture, construction equipment and other similar
scenarios where the optical techniques often fail. With the
introduction of dense sensor arrays in ultrasound imaging,
data transfer rate and data storage can become a
bottleneck in system design. Secondly, we introduce
compressed sensing to reduce the amount of sampled
channel data. Consequently, we propose a new approach
based on compressed sensing in data acquisition. In
addition, compressed sensing provides a significant
computational savings during on-chip implementation.
Therefore, it is considered the most feasible technique to
boost the performance. Thirdly, three sparse recovery
algorithms are implemented, leveraging the sparsity of the
signal received at each transducer element to reduce
sensor complexity while maintaining imaging quality.
Finally, the study’s validation is demonstrated through a
simulation model in MATLAB where proof-of-concept
implementations are demonstrated.
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2. CONVENTIONAL SIGNAL PROCESSING
FLOW IN ERTIS:

The eRTIS system is an active airborne ultrasound sensing
utilizes ping-based processing across multiple stages to
achieve 3D imaging. A detailed overview of the
processing pipeline of the eRTIS is shown in Figure (1)
These steps collectively transform the raw acoustic data
into high-resolution images that can be used for detailed
analysis and interpretation.
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a) Architecture of embedded real time imaging sonar.

b) The CoSys-Lab eRTIS sensor [8] in a custom
enclosure.

Figure 1. a) A schematic overview of the components
used in this paper. The eRTIS front-end is by default
connected to the eRTIS backend, which will handle
the microphone data. A USB connection between the
eRTIS backend and the Jetson Nano is used to
transfer data to Jetson Nano’s memory, where the
measurements can be stored. b) The CoSys-Lab
eRTIS sensor [1] in a custom enclosure.

In the front-end of the eRTIS, the Sens Comp 7000
transducer [ 18] emits a broadband ultrasonic chirp ranging
from 20 kHz to 80 kHz, which reflects off objects in the
field of view (FOV) environment. Subsequently, each
MEMS  microphone in the 32-Omnidirectional
microphone array simultaneously and individually
receives the reflected echoes. Due to the broad distribution
of acoustic energy in the frontal hemisphere and the near
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omnidirectional nature of the microphones, the sensor's
field-of-view covers the frontal hemisphere [19][20].
These reflected signals are modulated using a pulse
density modulator (PDM) integrated into the MEMS
microphone. Afterward, these Mono PDM  signals
%y [n] ... %35 [n] are demodulated using a decimation stage
that converts one-bit PDM microphone signals to 16-bit
PCM format %4 [n] ... %35 [n], which in turn serves as the
input to the back-end of the eRTIS.

It is important to highlight that the microphone signals are
require at each transducer element in a sensor array to be
sampled at a rate higher than the Nyquist criterion,
resulting in an extensive amount of data to be received,
stored, and processed. Therefore, sampling 32 elements
of a microphone array at 4.5 MHz, while respecting the
Nyquist criterion, results in a data rate of 144 Mbps.
Alongside the decimation stage performed in the Field-
Programmable Gate Array (FPGA) at the front-end, these
signals are processed using a bandpass filter to limit the
signals’ frequency to the desired range. The decimation
stage utilizes an IIR 6" order Butterworth low pass filter
with a cutoff frequency of 100kHz. Once filtered a
decimation of factor 10 is used, which effectively gets us
the data sampled at 450kHz The filtered signals

T [n] ... 23500l

In the back-end of the eRTIS, the initial signal processing
step involves a matched filter that enhances the signal-to-
noise ratio and compresses the emitted pulse into its auto-
correlation function, resulting in the pulse compressed
signal (see Figure 2).

SHF k] = F~H{ 8 [jw]. S5 lwl} @
In Eqn. (1), F~! represents the inverse Discrete Fourier
Transform (DFT) applied to the discrete Fourier
transforms of the signal from the ith microphone
channel, SM[jw], and the complex conjugate of the
Fourier transform of the emitted signal Sj[jw]. The
subsequent step involves the beamformer, which functions
as an acoustic lens directed towards a specific angle 1 in
the frontal hemisphere. Here, i = [8 @]T , where 8 is
the azimuth angle and ¢ is the elevation angle.

The matched filter is designed to align with the shape of
the transmitted ultrasound pulse, which is known a priori,
and peaks when it detects the desired signal. This peak
helps separate the wanted reflection from background
noise. Moreover, the matched filter output is a compressed
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version of the original signal, which reduces its duration.
This compression makes it easier to distinguish between
closely spaced reflectors, enhancing the signal-to-noise
ratio (SNR) and improving resolution.

The microphone signals are then combined with a
conventional  delay-and-sum (DAS) beamforming
algorithm that processes the digital signals to introduce
directionality in the reception stage. Consequently, the
array is digitally steered in predefined desired directions
of arrival in post processing technique, rotating in the
horizontal plane ranging from -90° to 90° in steps of 2°.

Eqn. (2) describes how the beamformer operates.
Currently, a delay-and-sum (or time-domain Bartlett)
beamformer is used due to its simplicity and robustness
against calibration errors. However, more advanced
beamformers can be implemented to achieve better peak-
to-sidelobe ratios in the imaging point spread function
[21]. It is important to note that most data-dependent
beamformers require multiple data snapshots, which may
not always be feasible in robotic applications where the
sensor moves quickly through the environment relative to
the sonar sensor's sampling rate of 10-15Hz. To address
the limitations of data-dependent beamformers, sparsity-
based segmentation techniques of the acoustic images can
be used to improve object localization accuracy, as
previously demonstrated in [22]. For the time-domain
Bartlett beamformer, time-delays?:(¥) are added to each
channel to compensate for the angle-dependent
differences in time-of-arrival caused by the array's
geometry.

Sgrlk] = X2 wp PPk +7,(y)] ©)

Where w; is a weight assigned to the channels are
selected using a Gaussian window over the array aperture
to minimize sidelobe levels in the point spread function
(PSF) and t,(y)) are the direction dependent delays given
by the Bartlett Beamformer [21].
The final step involves performing envelope detection for
each direction 1, where the envelope of the beamformed
signal is calculated by full-wave rectification and low-pass
filtering.

SEN[k] = | SEF[K]| x hy,[k] ®)

Where hy, is a low-pass filter (2" order Butterworth filter,
cutoff frequency = 1kHz). The signal Sj5¥[k] contains the
envelope of the beamformed signal in direction 1.

This process generates a collection of range-energy

profiles (Sf',[k]). These range-energy profiles from
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the desired directions are then combined into a single
image, referred to as the Energyscape (ES) of the
environment [23].

Finally, envelope detection stage extracts the energy-
profile in function of range and several of these range-
energy profiles are combined to form an acoustic image,
called the Energyscape. That is to say, this stage is
performed to represent the reflector distribution for each
particular direction, with the time axis representing the
range for that direction. These stages are all necessary to
create acoustic images, which are 2D or 3D images that
provide the intensity, range, and direction for each
detected reflector.

SElenlK (&Kl (SEX 5oy [K]
E(k, ) = S‘E‘}"PZ:' [kl Si'E‘?Z-tPZI' (k] S(Eé':'l.tpzj [k]
Selom M SEom (K] Stnom K11 (3)

Figure 2. Classical diagram of the digital signal
processing steps in eRTIS, the process begin with
the raw microphone signals x, [n] ... x5, [n], which are
pulse density modulated (PDM) signals oversampled
at 4.5 MHz. These signals then are then demodulated
to obtain the full ultrasonic signals of the N channels
%, [n] ... i35[n], represented as 16-bit PCM data
sampled at 450 KHz, filtered by IIR and decimated
by a factor of 10. The filtered signals %, [n] ... £3;[n].
are within the target frequency range of 20 KHz to
80 KHz. Next, in pre-processing stage, the discrete
time Fourier transform is applied to obtain
vy[n] ... ¥32[n]. A matched filter is then used to find
the actual reflections of the emitted signal, resulting
in SMF[k]... $2F[k]. Delay-and-sum beamforming
creates a spatial filter for every direction of interest,
producing  SZ{[k]... S§g;[k]. Finally, envelope
detection is used to clean up the spatial image,
yielding the Energyscape signals S;f[k]... S55;[k],
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which correspond directly to the finished acoustic
image.

3. COMPRESSIVE SENSING IN IN-AIR 3D
SONAR SYSTEM:

In a MEMS microphone, a digital transducer converts the
acoustic signal to an electrical signal, then an internal
sigma-delta modulator converts the electrical analogue
signal to a digital pulse density modulated (PDM)
bitstream with over sampling rate (OCR=10). For
Ultrasonic applications, the PDM bitstream is delivered at
a sampling rate typically in the IMHz to 3MHz range,
while the audio or baseband signal is supposed to be in the
20 Hz to 20 kHz range. The modulator’s order depends on
the vendor and they are generally 2™ or higher order. The
modulator shapes the quantization noise at higher
frequencies while the audio signal remains in the
baseband range. This quantization noise shaping is
performed by analogue feedback and oversampling stages
within the modulator with the intention of increasing the
signal-to-noise ratio (SNR) at baseband frequencies [24].

Pulse Density Modulation (PDM) signals themselves are
not inherently sparse in the time domain because they are
oversampled one-bit signals that represent the density of
pulses corresponding to the amplitude of the original
signal. Furthermore, one-bit data will cause high
quantization noise, resulting in a flat spectrum that is not
sparse. Only after low-pass filtering and decimation can
the signal become sparse. Therefore, Pulse Coded
Modulation (PCM) can exhibit sparsity in frequency
domain or a transformed domain, depending on the nature
of the original signal and the modulation process.

3.1 The theoretical
sensing:

fundamental of compressive

The traditional data acquisition techniques are based on a
set of measurements sampled at the Nyquist rate by an
Analog/Digital Converter (ADC), which can result in a
very high processing time, hardware cost, and
computational complexity [26]. The Nyquist-Shannon
sampling theorem asserts that to accurately and uniquely
reconstruct a signal, the sampling rate must be at least
double the highest frequency in the signal. Moreover, this
theorem remains valid; if a single unit of data in a white
noise signal is missed, the original signal cannot be
recovered [25]. This is because white noise is inherently
non-sparse, as it includes all frequencies with equal
intensity, making it impossible to represent with just a few
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non-zero coefficients. In contrast, ultrasonic signals in the
eRTIS are not white noise. A particularly significant
aspect of compressed sensing is the underlying matrix
computation. A raw signal can be regarded as a vector x
with numerous components. We assume that x can be
represented as a linear combination of specific basis
functions:

x=1c 4)

This basis must be suited to a particular application. In the
Eqn. (4) ,y, is the discrete cosine transform. We also
assume that most of the coefficients ¢ are effectively zero,
so that ¢ is sparse. Therefore, x can be either exactly c-
sparse in the time domain or approximately sparse in a
transform domain, such as Fourier basis, Discrete Cosine
transform and wavelet, etc.

An exactly c-sparse signal is defined as||x||;=¢
whereas the approximately sparse signal x = g 1is
defined as ||¢||g = c. This implies that most of signal
information is contained in the ¢ coefficients of the signal
x; transformed representation. We represent ¢, norm of a
vector X as:

@p = XLyl [P)H? O]
In this paper, we refer to ¥ as a few random samples of
x, so ¢ is a subset of the rows of the identity operator. But
more complicated sampling operators are possible. To
reconstruct the signal, we must try to recover the
coefficients by solving the following equation:

v = Ax, where 4 = ¢ (6)
Once we have the coefficients, we can recover the signal
itself by inverse transform domain. Since this is a
compression, 4 is rectangular fat matrix, with many more
columns than rows. Computing the coefficients x involves
solving an underdetermined system of simultaneous linear
equations, Ax = y. In this situation, there are many more
unknowns than equations. The key to the almost magical
reconstruction process is to impose a nonlinear
regularization involving the ¢ norm.
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3.2-The compressed sensing for acquisition in the
eRTIS:

The current time-domain beamforming techniques require
the signal at each transducer-element to be sampled at a
rate higher than the Nyquist criterion, resulting in an
extensive amount of data to be received, stored and
processed. For example, sampling 32 elements of a
microphone array by 4.5MHz will end up by 144 Mbps.

As shown in Figure (3) and (4), compressive sensing
involves two main processes: first part is sparse
representation and measurement , and second parts is
sparse signal recovery algorithm (SSR) [27]. Firstly, a
measurement matrix called sensing matrix ¢ should be
used to collect the information and simultaneously
compress signals, which can be shown as the part
associated with compressing and sampling with low-
speed. Secondly, the recovery of signals after
transmitting and storage should be accomplished by
solving an optimization problem with effective
algorithms.

| [ Sparse Signal Recovery(ssR)
j Stored ‘ minllxllg s.t. y=¢x
x

Comprisable Signal

Figure 3. Compressive sensing processes has two
primary components: compressive sampling (CS)
and sparse signal recovery (SSR).

Frontend Part Backend Part

Figure 4. Signal processing of the eRTIS
incorporates compressed sensing applied at the
backend which comprises two primary components:
compressed sampling (CS) and sparse signal
recovery (SSR).
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3.3- Spare Reconstruction Algorithms:

Compressive sensing relies on mathematical algorithms
solving the problem of data reconstruction from a
significantly reduced number of measurements by
exploring the properties of sparsity and incoherence.
Therefore, this concept includes optimization procedures
aiming to provide the sparsest solution in a suitable
representation domain. Moreover, to find the sparse
solution for the underdetermined linear system, the ¢
norm optimization problem should be solved. This is a
non-deterministic ~ polynomial-time hard (NP-hard)
combinatorial search problem, which is a prohibitively
expensive operation. However, ¢ ,-minimization does not
have an efficient algorithm because the objective function
is not convex. Therefore, an approximate solution has to
be investigated.

There are two fundamental approaches for reconstructing
from CS measurements: convex optimization and greedy
search algorithms. If the measurement matrix obeys the
restricted isometric property (RIP) with a sufficiently
small constant and there is no measurement noise, it is
possible to exactly recover signals from the measurement
vector 4 using convex optimization [27]. In this paper, a
standard Gaussian distributed sensing matrix will be used.
The application of ¢; norm minimization technique as
recovery algorithm was firstly evaluated and then
compared to two other competitive algorithms.

On the one hand, the sparse recovery approximation using
conversion of ¢; norm minimization to linear
programming has been implemented on our eRTIS
platform using MATLAB simulation. The number of
measurements, M, sufficient for successful recovery via
the L1 minimization is well known to be:

M = O(Klog(N / K) (7)

The implementation of the selected compressed sampling
and the signal reconstruction algorithms was performed in
MATLAB. The results were then compared with each
other and presented in Figure (5) and 6). It is important to
note that the implementation of the PDM to PCM
conversion including filtering stage was performed using
an FPGA in the front end. Therefore, the compressed
sampling is done ultimately in the software at the
backend. In the latest version of the eRTIS a Jetson

Nano from Nvidia is used process the signals.
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Figure 5. Reconstruction error versus the number
of remaining samples after compression for L1
minimization, OMP, and SBL algorithms.
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4. DISCUSSION AND CONCLUSION:

In this paper, we compared three sparse recovery
algorithms from the convex relaxation, greedy, and
Bayesian categories. We used two metrics: recovery error
and recovery time. Figure (6) shows recovery time,
which is a quantitative metric that assesses the duration
required by each algorithm to accurately resolve the
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sparse recovery problem. The full dimensional signal has
12,500 samples. As shown in Figure (5), Bayesian
techniques and Orthogonal Matching Pursuit show better
performance in terms of recovery error which decreases
to reach nearly 0% when the number of measurements
exceeds 600 samples, which represents just 5% out of
the full dimensional signal.

Greedy techniques are known for their speed, making
them the fastest among the methods. This is evident from
the very small reconstruction time in figure (6). On the
other hand, convex relaxation techniques are very efficient
in minimizing recovery errors, providing superior
performance in this aspect. Bayesian techniques have a
balance, offering both low recovery error and short
recovery time, making them well-rounded in their
performance. The ultrasound received signals in the
eRTIS have a correlation structure. The reconstruction
efficiency of the algorithms deteriorates if the correlation
structure is ignored. This aspect has been ignored by most
state-of-the-art algorithms.

Sparse Bayesian Learning (SBL) methods take advantage
of the signal correlation structure to make significant
improvements in reconstruction efficiency. It is reported
in the literature [28] that the exploitation of the correlation
structure with the sparsity of the non-sparse ultrasound
signals may significantly increase the efficiency of
reconstruction. It is demonstrated in Figure (6) that the
SBL algorithms obtain the highest speed to reconstruct
sparse signals.

Future work will involve the application of steerable
compressed sensing. This technique allows for sparse
scanning, eliminating the need to scan the field
thoroughly. Instead, we can randomly scan the field for
obstacles.
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