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ABSTRACT

Developing deep learning models for lung ultrasound
(LUS) segmentation is hindered by limited annotated data.
This study demonstrates the effectiveness of cross-domain
transfer learning (TL) using ImageNet pre-trained encoders
(VGG16, ResNet50, MobileNetV2) within a U-Net
architecture. Compared to training from scratch, TL with
ResNet50 and VGG16 significantly improved segmentation
Dice score (up to 30%). Furthermore, TL allowed reducing
the training dataset to 45% while achieving performance
comparable to the baseline trained on full data. These
findings validate cross-domain TL as a valuable and data-
efficient approach for LUS analysis.
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1. INTRODUCTION

Artificial Intelligence (Al) has emerged as a transformative
technology with significant potential in medical imaging
and diagnostics. In particular, Al-based approaches hold
promise for improving the accuracy and efficiency of
diagnostic procedures in various medical domains,
including pulmonary imaging [1, 2, 3]. Lung ultrasound
imaging plays an important role in diagnosing respiratory
conditions, offering real-time visualization of pulmonary
lesions [4]. However, the interpretation of lung ultrasound
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images can be challenging, and requires expertise to
identify subtle features and abnormalities accurately [5].

Al-based Semantic segmentation, is a powerful approach
for assessing LUS interpretation. However, a critical
challenge in applying deep learning models for
segmentation is the limited availability of large, annotated
datasets. The process of acquiring LUS images and
obtaining accurate annotations from expert radiologists is
both time-consuming and expensive. To mitigate this
bottleneck, some research efforts focus on developing
automatic labeling tools [6]. While promising, transfer
learning offers a complementary strategy by leveraging
knowledge from pre-trained models, potentially reducing
the amount of labeled data and training time required to
achieve high performance.

Transfer learning has the potential to address the challenges
associated with acquiring and labeling large datasets for
comprehensive model training, making it a promising
approach for enhancing the diagnostic utility of Al-based
segmentation models in pulmonary ultrasound imaging [7].

The objective of this study is to investigate the application
of cross-domain transfer learning techniques for lung
ultrasound image segmentation, aiming to harness the
power of pre-trained convolutional neural network (CNN)
models for diagnostic assistance in pulmonary imaging and,
to evaluate the impact of reduced training data on accuracy.
Specifically, architectures such as VGG16, ResNet50 and
MobileNetV/2 are studied as pre-trained encoders within an
Attention U-Net architecture.
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2. METHODS

2.1 CNN architectures

For semantic segmentation of LUS images, an Attention U-
Net architecture [8] was employed. This network is based
on the U-Net [9], which follows an autoencoder design
(Figure 1). An autoencoder consists of two primary
components: an encoder that progressively reduces the
spatial dimensions of the input image while extracting
increasingly abstract features, and a decoder that upsamples
these features to reconstruct an output of the same size as
the input. In U-Net based networks, skip connections
between corresponding encoder and decoder layers
facilitate the preservation of fine-grained details. The
Attention U-Net incorporates spatial and channel attention
modules [8] to further enhance feature discrimination.

Features

Decoder

Encoder

Figure 1. Schematic Autoencoder network architecture

To leverage transfer learning, the encoder portion of the
Attention U-Net was replaced with pre-trained networks.
Transfer learning is a technique where a model developed
for a task is reused as the starting point for a model on a
second task. In this case, models pre-trained on the large
ImageNet dataset for image classification were utilized as
encoder of the new architectures adapting them for LUS
image segmentation. This study investigated three such pre-
trained models: VGG16 [10], ResNet50 [11], and
MobileNetv2 [12]. The classification layers of these
models were removed, and feature maps were extracted
from a specific layer of each encoder serving as input to the
Attention U-Net decoder, which remained consistent across
all configurations.

2.2 Dataset

This study utilized a dataset of 5131 lung ultrasound (LUS)
images obtained from 30 patients diagnosed with COVID-
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19. The images were acquired as part of the clinical study
described in [13]. The dataset exhibits typical LUS artifacts
associated with pneumonia, including A-lines, B-lines, and
consolidations.

Image annotation was performed using a semi-automatic
labeling tool presented in [6]. This tool employs signal
processing algorithms to generate initial segmentation
masks. The results of this semiautomatic annotation tool
were validated at the video level by a LUS expert physician.
The annotations delineate the boundaries of artifacts such as
pleura, A-lines, B-lines, and consolidations.

2.3 Methodology

This study evaluated cross-domain transfer learning for
LUS image segmentation. An Attention U-Net, trained
from scratch, was compared to three transfer learning
configurations using pre-trained encoders (VGG16,
ResNet50, MobileNetV2). Each configuration was trained
four times with different random weight initializations to
account for the inherent stochasticity of the training process.
Performance was assessed using the mean and standard
deviation of the Dice Similarity Coefficient (DSC) between
the mean values on a reserved test set.

The dataset was divided into training (60%), validation
(20%), and testing (20%) sets using a patient-wise split to
provide a more realistic assessment of generalization
performance. All models were trained with a learning rate
of 3e-5, a batch size of 32, and the binary cross-entropy loss
function. A two-stage transfer learning procedure was used:
encoder layers were frozen for the first 60 epochs, then
unfrozen for fine-tuning during the remaining 60 epochs.
The reference model was trained from scratch for 120
epochs. Training was performed using TensorFlow 2.10 on
two NVIDIA 2080 Ti GPUs.

The best-performing encoder (based on DSC) was then
used in a data reduction experiment. Training set size was
reduced 5% by 5% until the model achieved a validation
DSC value below the reference model. The training
procedure was repeated four times for each reduced dataset
aiding consistency to the results. The model is stopped
when the DSC is below the baseline model.

3. RESULTS

Table 1 shows the mean and standard deviation of the
Dice Similarity Coefficient (DSC) for each model applying
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Transfer learning (TL) and fine-tunning (FN) calculated on
the test set.

Table 1. Segmentation performance.

Model Att-Unet Dice (meanzstd)
From Scratch 0.544 + 0.034
VGG16 (TL+FN) 0.691 + 0.033

MobileNetV2 (TL+FN) | 0.516  0.152
ResNet50 (TL+EN) 0.711 £ 0.043

Using ResNet50 as encoder with TL and FN achieved the
highest mean DSC (0.71 £ 0.04), a statistically significant
improvement over the baseline Attention U-Net (0.54 +
0.03). With VGG16 as encoder (TL+FN) also significantly
outperformed the baseline (0.69 + 0.03). These results
showed no statistically significant difference between
Resnet50 and VGG16 encoders. MobileNetV2 (TL+FN)
exhibited the lowest DSC (0.52 + 0.15).

Figure 2 illustrates an example of the differences on
segmentation performance between the Attention U-Net
base model and the Resnet50-based Attention U-Net.

Ground Truth From Scratch TL+FN

Figure 2. Segmentation performance comparison
between the reference model (from scratch) and the
Resnet50-Att. U-Net with TL and FN.

Following the initial comparison, the best-performing
encoder (ResNet50) was used to investigate the impact
of reduced training data. Models were trained on
progressively smaller subsets of the training data,
ranging from 95%. Figure 3 illustrates the mean DSC (+
standard deviation) achieved modifying the percentage
of training data used. The results indicate that leveraging
transfer learning with the ResNet50 encoder allowed the
training dataset size to be reduced to approximately 45%
while still achieving a mean DSC comparable to the
baseline Attention U-Net model trained from scratch on
the full (100%) training dataset.
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Figure 3. Data reduction results over Resnet50-based
Attention U-Net fine-tuned.

4. DISCUSSION

This study investigated the effectiveness of cross-domain
transfer learning for LUS image segmentation. The results
demonstrate its advantages: pre-trained ResNet50 and
VGG16 encoders significantly outperformed the baseline
Attention U-Net trained from scratch. This suggests that,
despite the significant domain difference between natural
images (ImageNet) and medical ultrasound, features
learned during pre-training are valuable for extracting
relevant patterns in all type of images. While ResNet50
yielded the highest mean Dice score, VGG16's performance
was comparable. On the contrary, MobileNetV2 performed
worse, potentially because its design, focused on efficiency
via parameter reduction, leads to lower representational
capacity or features less transferable to this specific cross-
domain task.

The data reduction study further highlights the value of
transfer learning, with results quantitatively presented in
Figure 3. This figure plots the validation Dice score of the
ResNet50 transfer learning model against the percentage of
training data used. It demonstrates that performance
comparable to the baseline model (DSC =~ 0.54) was
maintained even when using only 55% of the original
training data. This represents a substantial 45% reduction in
the required annotated dataset, underscoring the practical
benefit of cross-domain transfer learning in mitigating the
need for extensive data annotation. Interestingly, the
performance trend was not strictly constant; a noticeable dip
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towards the baseline performance occurred around the 70%
data mark where the mean performance approached or
slightly fell below the baseline threshold. However, a
sustained drop significantly below the baseline threshold
was only observed for data levels below 55%. Furthermore,
Figure 3 illustrates increased performance variability (larger
standard deviations) at lower data percentages (particularly
<75%), indicating greater training instability or sensitivity
to data sampling when data becomes severely limited.
Notably, while the standard deviation observed at the 55%
data level appears comparatively low relative to
surrounding data percentages in this experiment, this is
likely to be due to the stochastic nature of training with only
four runs, rather than an indication of particular stability at
this specific data level.

It is important to acknowledge certain limitations of this
study. Notably, exhaustive hyperparameter optimization
was not performed for each encoder, potentially impacting
individual model performance. Furthermore, results are
based on a specific COVID-19 LUS dataset, which may
limit generalizability. Future work should address these
limitations by performing systematic hyperparameter tuning
and evaluating performance on larger, more diverse LUS
datasets encompassing various pathologies. Investigating
more recent encoder architectures and comparing cross-
domain pre-training with medical domain pre-training could
also yield valuable insights.

Despite these limitations, this work provides evidence that
cross-domain transfer learning, particularly with ResNet50
or VGG16, is a highly effective and data-efficient approach
for LUS segmentation.

5. CONCLUSIONS

This study evaluated the application of cross-domain
transfer learning techniques for the semantic segmentation
of LUS images. The results conclusively demonstrate that
using pre-trained architectures such as VGG16 and
ResNet50 as encoders within an Attention U-Net network
significantly improves segmentation performance compared
to training from scratch. A marked increase in the Dice
Similarity Coefficient (DSC) of approximately 30% was
observed when employing transfer learning with the most
effective encoders.

A key additional finding is the potential of transfer learning
to mitigate the need for large annotated datasets. The data
reduction analysis indicated that it is possible to decrease, in
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this specific example, the training dataset size to
approximately 45% of its original size while still achieving
segmentation performance comparable to the baseline
model trained on the full dataset. This data efficiency
considerably reduces the burden associated with manual
labeling and model training, facilitating the development of
Al tools in data-limited settings.

Finally, this work validates the utility of cross-domain
transfer learning for medical imaging, and specifically for
lung ultrasound. It confirms that features learned from
large-scale natural image databases can be effectively
transferred and adapted to improve analysis in specialized
medical domains such as LUS, despite the inherent
differences between the image types. Overall, transfer
learning presents itself as a practical strategy for developing
accurate and efficient LUS segmentation models.
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