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ABSTRACT* 

Developing deep learning models for lung ultrasound 

(LUS) segmentation is hindered by limited annotated data. 

This study demonstrates the effectiveness of cross-domain 

transfer learning (TL) using ImageNet pre-trained encoders 

(VGG16, ResNet50, MobileNetV2) within a U-Net 

architecture. Compared to training from scratch, TL with 

ResNet50 and VGG16 significantly improved segmentation 

Dice score (up to 30%). Furthermore, TL allowed reducing 

the training dataset to 45% while achieving performance 

comparable to the baseline trained on full data. These 

findings validate cross-domain TL as a valuable and data-

efficient approach for LUS analysis. 

Keywords: Artificial Intelligence (AI), Transfer Learning, 

Fine-tuning, Segmentation, Lung Ultrasound (LUS). 

1. INTRODUCTION 

 Artificial Intelligence (AI) has emerged as a transformative 

technology with significant potential in medical imaging 

and diagnostics. In particular, AI-based approaches hold 

promise for improving the accuracy and efficiency of 

diagnostic procedures in various medical domains, 

including pulmonary imaging [1, 2, 3]. Lung ultrasound 

imaging plays an important role in diagnosing respiratory 

conditions, offering real-time visualization of pulmonary 

lesions [4]. However, the interpretation of lung ultrasound 

————————— 
*Corresponding author: mario.munoz.prieto@csic.es.  

Copyright: ©2025 M. Muñoz et al. This is an open-access article 

distributed under the terms of the Creative Commons Attribution 

3.0 Unported License, which permits unrestricted use, distribution, 

and reproduction in any medium, provided the original author and 

source are credited. 

images can be challenging, and requires expertise to 

identify subtle features and abnormalities accurately [5]. 

 

AI-based Semantic segmentation, is a powerful approach 

for assessing LUS interpretation. However, a critical 

challenge in applying deep learning models for 

segmentation is the limited availability of large, annotated 

datasets. The process of acquiring LUS images and 

obtaining accurate annotations from expert radiologists is 

both time-consuming and expensive. To mitigate this 

bottleneck, some research efforts focus on developing 

automatic labeling tools [6]. While promising, transfer 

learning offers a complementary strategy by leveraging 

knowledge from pre-trained models, potentially reducing 

the amount of labeled data and training time required to 

achieve high performance. 

 

Transfer learning has the potential to address the challenges 

associated with acquiring and labeling large datasets for 

comprehensive model training, making it a promising 

approach for enhancing the diagnostic utility of AI-based 

segmentation models in pulmonary ultrasound imaging [7]. 

 

The objective of this study is to investigate the application 

of cross-domain transfer learning techniques for lung 

ultrasound image segmentation, aiming to harness the 

power of pre-trained convolutional neural network (CNN) 

models for diagnostic assistance in pulmonary imaging and, 

to evaluate the impact of reduced training data on accuracy. 

Specifically, architectures such as VGG16, ResNet50 and 

MobileNetV2 are studied as pre-trained encoders within an 

Attention U-Net architecture. 
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2. METHODS 

2.1 CNN architectures 

For semantic segmentation of LUS images, an Attention U-

Net architecture [8] was employed. This network is based 

on the U-Net [9], which follows an autoencoder design 

(Figure 1). An autoencoder consists of two primary 

components: an encoder that progressively reduces the 

spatial dimensions of the input image while extracting 

increasingly abstract features, and a decoder that upsamples 

these features to reconstruct an output of the same size as 

the input. In U-Net based networks, skip connections 

between corresponding encoder and decoder layers 

facilitate the preservation of fine-grained details. The 

Attention U-Net incorporates spatial and channel attention 

modules [8] to further enhance feature discrimination. 

 

Figure 1. Schematic Autoencoder network architecture 

To leverage transfer learning, the encoder portion of the 

Attention U-Net was replaced with pre-trained networks. 

Transfer learning is a technique where a model developed 

for a task is reused as the starting point for a model on a 

second task. In this case, models pre-trained on the large 

ImageNet dataset for image classification were utilized as 

encoder of the new architectures adapting them for LUS 

image segmentation. This study investigated three such pre-

trained models: VGG16 [10], ResNet50 [11], and 

MobileNetV2 [12]. The classification layers of these 

models were removed, and feature maps were extracted 

from a specific layer of each encoder serving as input to the 

Attention U-Net decoder, which remained consistent across 

all configurations. 

2.2 Dataset 

This study utilized a dataset of 5131 lung ultrasound (LUS) 

images obtained from 30 patients diagnosed with COVID-

19. The images were acquired as part of the clinical study 

described in [13]. The dataset exhibits typical LUS artifacts 

associated with pneumonia, including A-lines, B-lines, and 

consolidations. 

 

Image annotation was performed using a semi-automatic 

labeling tool presented in [6]. This tool employs signal 

processing algorithms to generate initial segmentation 

masks. The results of this semiautomatic annotation tool 

were validated at the video level by a LUS expert physician. 

The annotations delineate the boundaries of artifacts such as 

pleura, A-lines, B-lines, and consolidations. 

2.3 Methodology 

This study evaluated cross-domain transfer learning for 

LUS image segmentation. An Attention U-Net, trained 

from scratch, was compared to three transfer learning 

configurations using pre-trained encoders (VGG16, 

ResNet50, MobileNetV2). Each configuration was trained 

four times with different random weight initializations to 

account for the inherent stochasticity of the training process. 

Performance was assessed using the mean and standard 

deviation of the Dice Similarity Coefficient (DSC) between 

the mean values on a reserved test set. 

 

The dataset was divided into training (60%), validation 

(20%), and testing (20%) sets using a patient-wise split to 

provide a more realistic assessment of generalization 

performance. All models were trained with a learning rate 

of 3e-5, a batch size of 32, and the binary cross-entropy loss 

function. A two-stage transfer learning procedure was used: 

encoder layers were frozen for the first 60 epochs, then 

unfrozen for fine-tuning during the remaining 60 epochs. 

The reference model was trained from scratch for 120 

epochs. Training was performed using TensorFlow 2.10 on 

two NVIDIA 2080 Ti GPUs. 

 

The best-performing encoder (based on DSC) was then 

used in a data reduction experiment. Training set size was 

reduced 5% by 5% until the model achieved a validation 

DSC value below the reference model. The training 

procedure was repeated four times for each reduced dataset 

aiding consistency to the results. The model is stopped 

when the DSC is below the baseline model. 

3. RESULTS 

      Table 1 shows the mean and standard deviation of the 

Dice Similarity Coefficient (DSC) for each model applying 
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Transfer learning (TL) and fine-tunning (FN) calculated on 

the test set. 

Table 1. Segmentation performance. 

Model Att-Unet Dice (mean±std) 

From Scratch 0.544 ± 0.034 

VGG16 (TL+FN) 0.691 ± 0.033 

MobileNetV2 (TL+FN) 0.516 ± 0.152 

ResNet50 (TL+FN) 0.711 ± 0.043 

Using ResNet50 as encoder with TL and FN achieved the 

highest mean DSC (0.71 ± 0.04), a statistically significant 

improvement over the baseline Attention U-Net (0.54 ± 

0.03). With VGG16 as encoder (TL+FN) also significantly 

outperformed the baseline (0.69 ± 0.03). These results 

showed no statistically significant difference between 

Resnet50 and VGG16 encoders. MobileNetV2 (TL+FN) 

exhibited the lowest DSC (0.52 ± 0.15). 

Figure 2 illustrates an example of the differences on 

segmentation performance between the Attention U-Net 

base model and the Resnet50-based Attention U-Net. 

 

Figure 2. Segmentation performance comparison 

between the reference model (from scratch) and the 

Resnet50-Att. U-Net with TL and FN. 

Following the initial comparison, the best-performing 

encoder (ResNet50) was used to investigate the impact 

of reduced training data. Models were trained on 

progressively smaller subsets of the training data, 

ranging from 95%. Figure 3 illustrates the mean DSC (± 

standard deviation) achieved modifying the percentage 

of training data used. The results indicate that leveraging 

transfer learning with the ResNet50 encoder allowed the 

training dataset size to be reduced to approximately 45% 

while still achieving a mean DSC comparable to the 

baseline Attention U-Net model trained from scratch on 

the full (100%) training dataset. 

 

Figure 3. Data reduction results over Resnet50-based 

Attention U-Net fine-tuned. 

4. DISCUSSION 

This study investigated the effectiveness of cross-domain 

transfer learning for LUS image segmentation. The results 

demonstrate its advantages: pre-trained ResNet50 and 

VGG16 encoders significantly outperformed the baseline 

Attention U-Net trained from scratch. This suggests that, 

despite the significant domain difference between natural 

images (ImageNet) and medical ultrasound, features 

learned during pre-training are valuable for extracting 

relevant patterns in all type of images. While ResNet50 

yielded the highest mean Dice score, VGG16's performance 

was comparable. On the contrary, MobileNetV2 performed 

worse, potentially because its design, focused on efficiency 

via parameter reduction, leads to lower representational 

capacity or features less transferable to this specific cross-

domain task. 

 

The data reduction study further highlights the value of 

transfer learning, with results quantitatively presented in 

Figure 3. This figure plots the validation Dice score of the 

ResNet50 transfer learning model against the percentage of 

training data used. It demonstrates that performance 

comparable to the baseline model (DSC ≈ 0.54) was 

maintained even when using only 55% of the original 

training data. This represents a substantial 45% reduction in 

the required annotated dataset, underscoring the practical 

benefit of cross-domain transfer learning in mitigating the 

need for extensive data annotation. Interestingly, the 

performance trend was not strictly constant; a noticeable dip 
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towards the baseline performance occurred around the 70% 

data mark where the mean performance approached or 

slightly fell below the baseline threshold. However, a 

sustained drop significantly below the baseline threshold 

was only observed for data levels below 55%. Furthermore, 

Figure 3 illustrates increased performance variability (larger 

standard deviations) at lower data percentages (particularly 

≤75%), indicating greater training instability or sensitivity 

to data sampling when data becomes severely limited. 

Notably, while the standard deviation observed at the 55% 

data level appears comparatively low relative to 

surrounding data percentages in this experiment, this is 

likely to be due to the stochastic nature of training with only 

four runs, rather than an indication of particular stability at 

this specific data level. 

 

It is important to acknowledge certain limitations of this 

study. Notably, exhaustive hyperparameter optimization 

was not performed for each encoder, potentially impacting 

individual model performance. Furthermore, results are 

based on a specific COVID-19 LUS dataset, which may 

limit generalizability. Future work should address these 

limitations by performing systematic hyperparameter tuning 

and evaluating performance on larger, more diverse LUS 

datasets encompassing various pathologies. Investigating 

more recent encoder architectures and comparing cross-

domain pre-training with medical domain pre-training could 

also yield valuable insights. 

 

Despite these limitations, this work provides evidence that 

cross-domain transfer learning, particularly with ResNet50 

or VGG16, is a highly effective and data-efficient approach 

for LUS segmentation. 

5. CONCLUSIONS 

This study evaluated the application of cross-domain 

transfer learning techniques for the semantic segmentation 

of LUS images. The results conclusively demonstrate that 

using pre-trained architectures such as VGG16 and 

ResNet50 as encoders within an Attention U-Net network 

significantly improves segmentation performance compared 

to training from scratch. A marked increase in the Dice 

Similarity Coefficient (DSC) of approximately 30% was 

observed when employing transfer learning with the most 

effective encoders. 

 

A key additional finding is the potential of transfer learning 

to mitigate the need for large annotated datasets. The data 

reduction analysis indicated that it is possible to decrease, in 

this specific example, the training dataset size to 

approximately 45% of its original size while still achieving 

segmentation performance comparable to the baseline 

model trained on the full dataset. This data efficiency 

considerably reduces the burden associated with manual 

labeling and model training, facilitating the development of 

AI tools in data-limited settings. 

 

Finally, this work validates the utility of cross-domain 

transfer learning for medical imaging, and specifically for 

lung ultrasound. It confirms that features learned from 

large-scale natural image databases can be effectively 

transferred and adapted to improve analysis in specialized 

medical domains such as LUS, despite the inherent 

differences between the image types. Overall, transfer 

learning presents itself as a practical strategy for developing 

accurate and efficient LUS segmentation models. 
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