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ABSTRACT

This paper deals with one of the subfields of physics-
informed machine learning: data-driven discovery of par-
tial differential equations. This work focuses on finite-
amplitude sound propagation, i.e., nonlinear wave equa-
tions of the second-order approximation. Based on the
principle of parsimony, we employ the sparsity promoting
regression techniques to discover the governing equations.
The training dataset was obtained by numerically solving
the compressible Navier-Stokes equations. The investi-
gated case involves the propagation of pressure pulses as
travelling waves, leading to the discovery of the West-
ervelt equation. An algorithm trying to discover strong
formulation of a partial differential equation suffers from
low accuracy, due to the physical phenomena we are deal-
ing with, i.e. local steep gradients. Improved accuracy
was achieved when the problem is converted from strong
formulation to a weak one. This benchmark study opens
up opportunities for further discoveries in finite-amplitude
sound propagation or findings linearizing transformations.

Keywords: data-driven discovery, finite-amplitude
sound propagation, weak formulation, Westervelt equa-
tion

1. INTRODUCTION

Recently, physics-informed machine learning has gained
attention. Here we focus on one of its subfields, the data-
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driven discovery of partial differential equations (PDEs
– see e.g., [1–3]). In the field of finite-amplitude acous-
tics, the potential of equation discovery was shown in [4]
on data obtained from numerically solved compressible
Navier-Stokes equations. Based on Ockham’s razor prin-
ciple, the goal was to find a model sparse in terms in-
cluded in the model. Hence, providing a closed library
of candidate terms, one sparse regression methods (in this
case LASSO [5]) is employed to re-discover the governing
equations. However, the discovery of bulk losses turned
out to be below the discrimination capability of the cho-
sen method, since the losses were of order comparable to
noise. Filtering the noise would not be a solution: steep
derivatives that are by the nature of things present in the
finite-amplitude acoustics would then diminish and the
very essence of data would be lost. This issue could be
overcome by converting finding PDEs from the strong for-
mulation to a weak one. Benchmarking the PDE finder on
known equations in finite-amplitude acoustics allows later
for data-driven discovery or finding linearizing transfor-
mations.

This paper is organized as follows. In Sec. 2, the
governing equations are introduced together with the nu-
merical solver employed for obtaining the training dataset.
Next, the discovery of the wave equation in weak formu-
lation is described in Sec. 3. The results are presented and
discussed in Sec. 4 and finally, the conclusions are drawn
in Sec. 5.

2. GOVERNING EQUATIONS AND THEIR
NUMERICAL SOLUTION

In this paper, we show a developed procedure for equa-
tion discovery on weakly nonlinear travelling waves. The
training dataset has to be generated from equations as
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close as possible to conservation laws (or are the direct
equivalent of conservation laws) to avoid including any
bias. Throughout this work, we assume that the medium is
a viscous, thermally conducting gas governed by the ideal
gas state equation. The compressible Navier-Stokes equa-
tions can be rearranged as a set of convection-diffusion
equations valid up to the third order changes, suitable for
the finite-amplitude acoustics, as was shown by Červenka
and Bednařı́k [6]. These equations can be put to a form
convenient for numerical solution by introducing the non-
dimensional mass density Λ and the non-dimensional mo-
mentum density Π:
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where ℓ, ζ, η, κ, cV and cp denote the characteristic spatial
dimension, the bulk and shear viscosities, the specific heat
ratios at constant volume and pressure, respectively. The
subscript 0 labels the ambient variables (measured in a
quiescent, unperturbed medium).

The non-dimensional pressure can be recovered from
the solution of the equations as [6]:

p =
1

γ
Λγ − bp

∂
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)
, (5)

where bp = κ(1/cV − 1/cp)/ρ0c0ℓ. Finally, the dimen-
sional pressure is then obtained as p̃ = pρ0c

2
0.

The equations (1)–(2) are cast in the convection-
diffusion form. Due to their nonlinear nature leading to
formation of shocks, it is necessary to employ a high-
resolution scheme for numerical integration. In this paper
we use the Kurganov-Tadmor scheme [7] with the OS-
PRE flux limiter [8]. Although the numerical viscosity
introduced by the algorithm is not large and does not hin-
der key physical processes (in particular the wave steep-
ening), it still plays a non-negligible role in the equation
discovery described below.

3. DISCOVERY OF THE WAVE EQUATION

A key point of many equation discovery algorithms is the
creation of a library of candidate terms [3]. In the classical
(strong) formulation of the problem of partial differential
equations, it is necessary to numerically evaluate partial
derivatives from the training data. Since the input is often
not smooth enough, this approach leads to a significant in-
tensification of noise. Of course, there are a number of ap-
proaches to partially circumvent this problem (e.g., using
Golay-Savitzky filtering). However, these run into a fun-
damental problem in the case of finite-amplitude acous-
tics: here, the occurrence of local steep gradients is not
just an artifact of unfortunate data processing, but also
a physical phenomenon itself [9, 10]. The ability to use
an equation discovery procedure such that it bypasses the
need to compute derivatives from the data is vital to ad-
vancing the field any further.

A simple and elegant solution is provided by the
weak-PDE-LEARN algorithm by Stephany and Earls
[11]. Its variant and adaptation to our field we present
in this paper. The main idea is to convert the problem of
finding PDEs from the strong formulation to a weak one.
Slightly simplified: Instead of ensuring the correct match-
ing of the differential terms in the infinitesimal neighbor-
hoods of the selected spacetime points, we focus on veri-
fying that the integrals of the candidate terms fit together
for any appropriately chosen weight functions. In the fol-
lowing paragraphs we will go through this concept.

Let Ω denote the domain Ω ≡ [0, X] × [0, T ] (i.e.
we consider one spatial dimension for which x ∈ [0, X]
and time t ∈ [0, T ]). The underlying physical system has
non-zero losses, so infinite steep shocks do not form in it.
We can therefore safely assume that the acoustic pressure
field p(x, t) in the training data is well-behaved (i.e. it
forms a compact, connected set with a Lipshitz continuous
boundary).

In the following, we use the multi-index notation of
the partial derivatives:

Dα(m,n)p ≡ ∂pm+n

∂xm∂tn
, (6)

so for instance the d’Alembertian can be written as

∂2p

∂t2
− ∂2p

∂x2
≡ D(0,2)p−D(2,0)p . (7)

If we assume that we are in the limit of weakly nonlin-
ear acoustics, then it makes sense to look for equations in
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a form that presents only a correction to the linear (small-
amplitude) wave equation. Hence, the equation is sought
in the form:

D(0,2)p−D(2,0)p =
∑
i

ciD
αipsi (8)

where ci, αi and si denote the multiplicative constant, the
multi-index and the power of the i-th candidate term. For
the purposes of this article, we only allow s to take integer
values of 1 and 2 (i.e. either the terms linear in pressure
or with a quadratic nonlinearity).

Now we multiply both sides of the equation (8) by
the weight function wk = wk(x, t) and integrate over the
whole spacetime domain Ω:

∫
Ω

wk

(
D(0,2)p−D(2,0)p

)
dx dt =∑

i

ci

∫
Ω

wkD
αipsi dx dt . (9)

In full generality, Eq. (9) shall hold for any weight
function wk(x, t) ∈ C∞

c . Here we restrict the analysis to
the family of bump functions of the form:

wk(x, t) = exp

[
βr2

(x− x0)2 + (t− t0)2 − r2
+ β

]
(10)

if (x, t) lies within a ball of radius r centered around
(x0, t0). Or wk(x, t) = 0 otherwise. The required ”k-
th realization” is given by the choice of β, r, x0 and t0. If
we allow only the bump centers (x0, t0) lying well inside
the domain Ω (i.e. distant from the boundary ∂Ω by more
than r), we can make use of the fact that wk = 0 at ∂Ω.
Hence, by Green’s lemma:

∫
Ω

wkD
αipsi dx dt = (−1)|αi|

∫
Ω

psiDαiwk dx dt ,

(11)

where |αi(m,n)| = m + n. See Fig. 1 for schematic
depiction.

This is the important step as it allows to switch the
differentiation from the data p(x, t) to the analytically
differentiable weight function wk. For completeness, of

course, the same procedure can also be used with the
d’Alembertian on the left-hand-side of Eq. (9).

By repeating this procedure for each test function
and each candidate term, we obtain a system of algebraic
equations for the coefficients ci:

Akici = bk , (12)

where

Aki = (−1)|αi|
∫
Ω

psiDαiwk dx dt , (13)

bk =

∫
Ω

p
(
D(0,2)wk −D(2,0)wk

)
dx dt . (14)

Now we can simply solve this set with an appropri-
ate sparsity-promoting technique in order to get the ac-
tive terms in the wave equation and their coefficients. In
this article we employed the Least-squares-post-Lasso al-
gorithm (see e.g., [12] for details).

4. RESULTS & DISCUSSION

In this conference paper we will show only one applica-
tion of the above procedure, namely the discovery of the
equation for weakly nonlinear travelling waves. From the
training data, we select only the spatio-temporal domain
in which the Gaussian pulses propagate without interfer-
ing or being in contact with boundary conditions of any
kind.

We use the results of 41 simulations for different pulse
amplitudes and widths to provide statistics on the accu-
racy of the discovered wave equation for comparison with
known analytical models. Candidate terms were assumed
as follows:

D(1,0)p , D(0,1)p , D(0,3)p , (15)

D(1,1)p , D(2,0)p2 , D(0,2)p2 . (16)

Since these are corrections to the d’Alembert wave
equation, we can also physically interpret the individual
terms: In the first line it is various loss mechanisms (odd
derivatives with real coefficients) and in the second line it
is convection and nonlinearity.

In each simulation, 100 weight functions were used
which made the system well-overdetermined. The cen-
ters of the bump functions were chosen randomly with
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Figure 1. Illustrative depiction of manipulations in the PDE discovery algorithm in the weak form. Left:
propagating pressure pulse p(x, t) with a black dot denoting the center of the weight function. Middle: The 3rd
time derivative of the weight function: D(0,3)wk(x, t). Right: an example of the integrand on the right-hand-
side of Eq. (11): p(x, t)D(0,3)wk(x, t).

the constraint that the pressure at (x0, t0) must not be less
than half of the maximum pressure in the dataset (other-
wise some rows in the matrix Aki could be trivial).

The resulting wave equation has the following form
(for clarity, in the classical partial derivative notation):

∂2p

∂t2
− ∂2p

∂x2
=

(1.193± 0.011)
∂2p2

∂t2
+

+ (0.001± 0.000)
∂2p2

∂x∂t
+

+ (0.004± 0.002)
∂2p3

∂t3
. (17)

The first term on the right-hand side is the nonlinear-
ity that corresponds to the Westervelt equation [9,10]. The
value of its coefficient is within the confidence interval the
same as the textbook value (γ + 1)/2. Note that the rela-
tive width of the confidence interval is very small, so this
is in fact a quite precise result.

The second term on the right-hand-side is quite small
and virtually did not vary among the obtained results,
which would suggest a systematic error of some sort. Ba-
sically, it is a correction to the unit wave propagation
speed. It is very likely just a minor artifact of re-sampling.

The third term on the right-hand-side represents
losses. Of all the differential order possibilities, the algo-
rithm did indeed correctly select the one that would cor-
respond to the thermoviscous attenuation in the bulk of

the fluid. However, the coefficient is too big for the ideal
gas and its confidence interval is quite large as well. Very
likely, we are witnessing that the algorithm has correctly
found a coefficient that matches the numerical viscosity
of the solver [7]. This would explain both the coefficient’s
value and its variance, since the numerical viscosity in this
case is proportional to the fourth spatial derivative and will
therefore vary quite considerably for each initial condi-
tion.

It can be expected that the latter problem would not
arise if the waves were propagating through a more lossy
environment. Then the numerical viscosity of the solver
could be small compared to the losses in the medium. As
a trade-off, however, we would lose the advantage that the
governing equations from which we take training data are
close to the first principles, since the loss and nonlinearity
parameters are often only measured in real fluids [9, 10].

5. CONCLUSIONS

In this work, we have demonstrated the advantages of dis-
covering partial differential equations using the weak for-
mulation. This approach proves effective for modeling
the propagation of weakly nonlinear acoustic waves. In
such cases, computing numerical derivatives — especially
of second and third order — is often quite challenging
and susceptible to noise amplification. In the weak form
the discovery of nonlinear wave equations gets technically
tractable and arguably more accurate.

Current efforts are focused on generalizing the ap-
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proach to multiple spatial dimensions and to incorporate
the interfering waves as well. At present, the work re-
mains in the benchmarking phase, where the accuracy and
robustness of the method are being systematically eval-
uated. Looking ahead, the promising applications lie in
more realistic wave systems. These include, for exam-
ple, the behavior of acoustic beams propagating through
complex or heterogeneous media. There are even related
machine learning techniques aimed at finding linearizing
transforms.
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