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ABSTRACT
In Non-Destructive Testing (NDT), imaging with ar-
ray probes is frequently performed in a two propaga-
tion medium scenario, where the first acts as a coupling
medium, and the second is the object under test. There-
fore, the position and shape of the refracting interface be-
tween the two mediums must be known in order to com-
pute the imaging focal laws. This geometrical information
can be inferred from the arrival times of echoes reflected
on the object’s surface, which must be identified within
the signals. A common approach for detecting these sur-
face echoes is the first-threshold crossing method; how-
ever, it is susceptible to outliers, and more robust al-
ternatives are needed. In a recent work, we developed
and trained a 3D Convolutional Neural Network (Deep-
Echo3D) using an 11x11 matrix array to accurately and
reliably detect surface echoes. While effective, the model
is tailored to the specific array used. In this study, we ex-
plore extending DeepEcho3D to other matrix arrays with
varying shapes and frequencies. Our findings demonstrate
that it is unnecessary to start from scratch for each new ar-
ray; instead, we can leverage transfer learning from the
initial model.
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1. INTRODUCTION

Ultrasonic Testing (UT) is a widely used Non-Destructive
Testing (NDT) technique for internal imaging of indus-
trial and structural components. It relies on proper cou-
pling between the transducer and the test component, of-
ten achieved through immersion tests, that is, using water
as coupling media.

The use of array probes [1] allows various imaging
modes, including conventional Phased Array (PA), as well
as more advanced techniques such as TFM (Total Focus-
ing Method) [2] and PWI (Plane Wave Imaging) [3, 4],
which offer improved resolution and versatility.

Inspection using the immersion technique presents
difficulties in accurately calculating focal laws due to re-
fracted rays. This, in turn, requires in-depth knowledge
of both the test component surface and the probe location
and orientation (PLO) relative to it.

The mentioned challenge has been addressed by adap-
tive imaging algorithms, which utilize ultrasonic signals
to estimate the geometry before generating the final im-
age, also referred to as auto-focusing techniques [5–7].
Among the various proposed algorithms for computing
surface points, a subset of them relies on accurately de-
tecting the time of flight (TOF) of surface echoes, making
a robust TOF measurement method essential.

There are various methods for TOF detection [8, 9],
being the simplest one the threshold crossing technique.
Nevertheless, despite its efficiency, spurious echoes, as
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those from water bubbles or probe surface waves, can
cause measurement errors. Improving these methods is
essential, as TOF measurements is widely used not only
in UT but also in numerous other acoustic signals applica-
tions.

Given the strong capabilities of machine learning and
deep learning for data classification and image segmenta-
tion, as well as their successful application in NDT re-
search [10, 11], we leveraged this potential in a recent
study to address the aforementioned measurement issues.
The designed network (DeepEcho3D) was trained using
data acquired from a 3 MHz, 1 mm pitch, 11×11 matrix
array and a set of simple yet diverse surfaces [12]. The
model demonstrated strong performance in detecting sur-
face echoes across a sufficiently distinct set of test geome-
tries, evaluated using two customized metrics: the per-
centage of outliers and a magnitude of error relative to the
ground truth for the acquired data.

This study explores the adaptation of the DeepE-
cho3D model to a different array configuration using
transfer learning and fine-tuning techniques. The model
was adapted to a 5 MHz, 0.9 mm, 8×16 matrix array. The
adaptation process consisted of three key stages: (a) trans-
ferring the pre-trained model to the new array dimensions,
(b) fine-tuning selected layers to improve performance,
and (c) evaluating the model’s stability across multiple
training runs.

2. METHODS

The adaptation process involved loading the pre-trained
DeepEcho3D model, modifying its architecture to accom-
modate the new input shape (8×16), and transferring the
original model’s weights to the corresponding layers in
the new network. To fine-tuning the transferred network,
the dataset was obtained from a plane surface. The pur-
pose is to use a single component instead of a set of dif-
ferent shapes, as in [12]. And finally, performance evalu-
ation was conducted using customized metrics originally
defined for the original net.

2.1 Data Acquisition

Data was generated through the Full Matrix Capture
(FMC) 1 technique across 178 PLOs. For each PLO, a

1 FMC: Technique where each element in an ultrasound array
transmits a pulse one at a time while all elements in the array
record the returning echoes. This process is repeated for each
element in the array.

partial FMC was obtained using 9 elements as emitters,
and all 128 elements as echo receivers, resulting in a to-
tal of 1602 (178 × 9) images. These images were then
randomly divided into training (60%), testing (20%), and
validation (20%) subsets

Essential for the network retraining stage, image la-
beling was automated during the post-processing of the
acquired data. The Ground Truth (GT) is a binary mask,
GT (i, j), being i the time index and j the array element
index. The theoretical TOF of the surface echo has time
index Idxtrue(j), such that:

GT (i, j) =

{
0, i > Idxtrue(j)

1, i < Idxtrue(j)
(1)

Idxtrue(j) is computed using the law of specular re-
flection, as described in [13]. Fig. 1 shows an example of
Idxtrue in its upper graph (green line).

Three extra sets of data, two convex cylindrical sur-
faces (35 and 12 mm diameter), and one concave-shaped
cylinder (40 mm diameter), were further acquired to as-
sess the fine-tuned models performance under different
geometries.

2.2 Experimental Setup

2.2.1 Preliminary Testing

The first dataset came from a plane surface, providing an
initial test for the transferred model. The initial assess-
ment revealed that, although the model generalized well,
certain segmentation inaccuracies persisted. Fig. 1 and
Fig. 2, illustrate, respectively, 1) an example of satisfac-
tory performance, where the model correctly segmented
the image (lower plot) based on the ground truth shown
in the upper graph; and 2) a challenging case for the new
model, with imprecise segmentation. Both images cor-
respond to a single emitter element, and what is seen is
the 2D representation of the 3D array acquisition (up-
per plot), and the transferred model segmentation output
(lower plot). Now, to mitigate these segmentation inaccu-
racies, a fine-tuning strategy was implemented, retraining
specific layers on the new dataset.

2.2.2 Section-Wise Exploration

DeepEcho3D consists of an autoencoder architecture,
which can be divided into three main sections: (1) the
encoder, which extracts hierarchical features and com-
presses input data into a lower-dimensional representa-
tion. It consists of two internal blocks, each containing
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Figure 1: Instance of acceptable performance for ini-
tial model adaptation

two convolutional layers. (2) The bottleneck, which in-
corporates a reduced set of features representing the most
important information from the input; and (3) the decoder,
that reconstructs the original data from the latent space,
aiming to preserve essential spatial and feature details.

The exploration was structured into the network’s
three main sections: encoder, bottleneck, and decoder,
with fine-tuning applied only to convolutional layers, ex-
cluding batch normalization and other layers. Addition-
ally, the two internal encoder blocks were added as sup-
plementary configurations to be explored. This led to five
different fine-tuning setups. 1) Encoder (4 convolutional

Figure 2: Instance of challenging case for initial
model adaptation. Red arrows highlight the regions
where the network’s segmentation is inaccurate.

layers); 2) Bottleneck (2 convolutional layers); 3) Decoder
(5 convolutional layers); 4) Encoder 1st block (2 convolu-
tional layers); and 5) Encoder 2nd block (2 convolutional
layers)

Convolutional layers are primarily responsible for
feature extraction and generalization across different
datasets [14–16], which motivated the chosen approach.

2.2.3 Fine-Tuning Implementation

During the fine-tuning process, the following optimized
hyperparameters were used (see Table 2), originally se-
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lected as the best-performing ones for the 11×11 model
[12]. This approach aimed to retain the effectiveness of
the original model while allowing it to generalize to dif-
ferent array configurations.

Table 1: DeepEcho3D optimized hyperparameters.

Hyperparameter Value
Number of filters 16
Number of layers 12
Convolutional kernel size (3, 3, 12)
Pooling size (1, 1, 8)
Epochs 10
Batch size 16
Learning rate 0.001
Steps per epoch 61
Loss function Binary cross-entropy

2.3 Evaluation

Regarding the metrics used to assess the performance of
the resulting models, two customized evaluation metrics
were employed, defined as follows.

Index Error: This metric is defined as the maximum
of the absolute value of the numerical difference between
the predicted indexes and the true indexes, over the entire
set of array elements 2 , see Eqn. (2). Thus, for each A-
scan within an FMC acquisition, a theoretical TOF index
is determined and compared against the index predicted
by the model.

IdxMaxError = max(|Idxpred − Idxtrue|) (2)

Outlier Rate: This metric is particularly important
for evaluating models reliability in practical applications.
It is based on the computed error of indexes ((3))

Idxerr = |Idxpred − Idxtrue| (3)

It measures how frequently the Idxerr exceeds a pre-
defined threshold. The total count of such occurrences,
relative to the dataset size (N), defines the outlier percent-
age.

2 For instance, with 989 test images, this would correspond to
N = 989× 128 = 126592 index-error values

Finally, given the stochastic nature of deep learning
optimization, a stability assessment was carried out on
each of the fine-tuned configurations, via multiple runs.
Specifically, 10 runs per model were performed, and both
evaluation metrics were computed for each, aiming to
identify the configuration with the least deviation from its
previous results. Therefore, the ideal models are those that
exhibit minimal dispersion and remain close to the origin
in the metric space.

Performance was assessed using data acquired from
the three previously mentioned cylindrical components.
These geometries were previously included in the test
set for the original 11×11 model, making them suitable
benchmarks to evaluate fine-tuned models. In particu-
lar, the concave-shaped 40 mm cylinder posed the greatest
challenge, as it represents a complex case for the segmen-
tation process.

3. RESULTS

Fig. 3 presents a comprehensive comparative analysis, not
only between the fine-tuned models and the transferred
network (Model 8x16) but also among themselves. It
shows that the selective retraining of each set of convo-
lutional layers enhances the capabilities, to a greater or
lesser extent, of the transferred model, which has 14.43%
outliers.

The most significant improvement correspond to the
first block of the encoder section, highlighted in Fig. 3
(with 2.33% of outliers), followed by the full encoder
(5.53 %); the bottleneck (6.56 %); the decoder (8.13 %);
and finally the second block of the encoder (8.37 %).

Fig. 4 illustrates how fine-tuning enhances perfor-
mance in a challenging case where the initial model en-
counters difficulties with image segmentation, where the
test image exhibits low-amplitude surface echoes.

With the model using only the transferred weights,
it fails to accurately identify and segment these surface
echoes (Fig. 4a). However, in the encoder’s first-block
fine-tuned version, the model demonstrates a notable abil-
ity to capture very low-amplitude surface echoes while ef-
fectively suppressing superficial waves generated by the
transducer (Fig. 4b). This highlights the efficacy of fine-
tuning in improving the model’s image segmentation per-
formance.

Fig. 5 represents the results of the stability analysis
described earlier. As observed, this analysis confirms that
the first block of the encoder is the most consistent and
stable configuration, exhibiting the least dispersion and
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Figure 3: Comparison of Model Performance by customized metrics

the best performance in the metric space (with an aver-
age outlier rate of 2.6%, and an average IdxMaxError of
6.4%).

4. DISCUSSION

This study confirmed that knowledge learned from one ar-
ray setup can be successfully leveraged for another, with
fine-tuning improving segmentation accuracy. However,
several aspects of this adaptation approach call for further
discussion.

One of the key challenges in transfer learning is de-
termining which layers should be fine-tuned to maxi-
mize performance while maintaining computational effi-
ciency. This study evaluated various fine-tuning config-
urations, with results indicating that retraining the first
encoder block yielded the most stable and accurate out-
comes. However, the success of the first encoder block in
this specific setting does not necessarily generalize to all
ultrasound imaging problems, and a more thorough analy-
sis could reveal alternative fine-tuning strategies with even
better results. For instance, investigating the impact of
fine-tuning different types of layers, beyond just convolu-
tional ones, or employing techniques such as progressive

fine-tuning [17], may further refine model adaptation.
While the study successfully adapted the model to

an 8x16 array, the performance of this transfer learning
approach could be explore further across different ultra-
sound imaging conditions, such as variations in material
properties, noise levels, or different probe manufacturers.

To enhance model adaptation even more, future re-
search could explore adaptive fine-tuning strategies that
automatically determines the optimal layer to update
based on the dataset and task complexity [18]. Addition-
ally, conducting experiments with a wider variety of ge-
ometries and different acquisitions conditions would help
validate the robustness of the approach.

5. CONCLUSIONS

The results demonstrate that transfer learning plus fine-
tuning was a viable approach for adapting the DeepE-
cho3D model for a different array configuration, without
requiring a complete retraining process, and by utilizing
only a single training component. The initial transferred
model already showed promising performance, confirm-
ing that knowledge learned from one array setup can be
effectively leveraged for another. Despite this, fine-tuning
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(a) Segmentation for initial transferred model without
fine-tuning

(b) Segmentation after fine-tuning the first block of the
encoder

Figure 4: Comparison between Transfer learning vs Transfer learning + Fine-tuning

Figure 5: Stability Analysis

specific network sections enhanced segmentation accu-
racy.

The exploration of different fine-tuning strategies re-
vealed that focusing on the first block of the encoder pro-
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vides the most significant improvements, offering the best
performance and greatest stability within the metric space.
This suggests that early layers of the encoder, which cap-
ture more fundamental features, may be particularly criti-
cal for adapting the model to new array configurations.
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