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ABSTRACT

Object tracking and acoustic beamforming are key tech-
nologies in applications such as surveillance, human-
computer interaction, and robotics. This paper ex-
plores integrating deep learning-based object tracking
with acoustic beamforming on an embedded device to
enhance sound source localization and directional audio
capture in dynamic environments. To include depth infor-
mation, the system was tested with single-camera depth-
estimation models and stereo cameras, enabling accurate
3D localization of tracked objects. The system utilizes
a planar concentric circular microphone array built with
MEMS microphones for compact design and low power
consumption, supporting 2D steering capabilities in az-
imuth and elevation. Positional data from object tracking
is processed on the embedded device to dynamically steer
the beamforming algorithms, aligning the microphone ar-
ray’s focus with the tracked object’s location. The inte-
gration of spatial awareness from deep learning trackers
with 2D beam steering demonstrates robust performance
and adaptability in the presence of moving objects. Ex-
perimental evaluations further confirmed that beamform-
ing significantly improves the signal-to-interference ratio,
effectively isolating the target source even in dynamic sce-
narios. This compact design is suitable for teleconferenc-
ing, smart home devices, and assistive technologies for the
visually impaired, where combining object tracking and
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beamforming is essential.
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1. INTRODUCTION

The growing demand for intelligent systems capable of ro-
bust sound source localization and directional audio cap-
ture has positioned object tracking and acoustic beam-
forming as pivotal technologies. Applications such as
teleconferencing, smart home automation, assistive tech-
nologies and other types of human-robot interaction rely
on the integration of spatial awareness and audio en-
hancement to function effectively [1,2]. Recent advance-
ments in embedded computing and deep learning en-
able more cohesive solutions, combining visual percep-
tion with adaptive audio processing to address these chal-
lenges.

The integration of visual tracking and acoustic beam-
forming has significantly enhanced sound source localiza-
tion, enabling precise directional audio capture in both
classical and modern systems. Devices such as the Mi-
crosoft Kinect and Intel RealSense D455 combine RGB
cameras, depth sensors, and microphone arrays to spa-
tially focus audio by targeting a speaker’s mouth using
3D depth maps to suppress noise. More recent applica-
tions, like that by Nagasha et al. [3] which combines face
tracking with beamforming for “remote whispering”, as
well as mobile robots tackling the cocktail party prob-
lem [4], utilize deep learning to enhance performance in
multi-source environments. Moreover, depth estimation
is vital for near-field beamforming accuracy, which can
be achieved using either classical structured light meth-
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ods (as seen in the Kinect) or modern deep learning ap-
proaches such as Monodepth2 [5] and visual-acoustic dis-
parity mapping [6], ensuring adaptability across diverse
scenarios.

Real-time audio-visual integration on embedded plat-
forms is achieved through hardware-software co-design,
balancing computational efficiency with performance.
Depth maps derived from visual sensors provide spa-
tial coordinates that dynamically steer beamforming al-
gorithms, enabling precise audio focus in compact, low-
power devices. Studies such as [7] and [8] demonstrate
how model pruning, quantization, and hardware accel-
eration (e.g., GPU/TPU offloading) overcome resource
constraints. These optimizations empower applications
in smart homes, teleconferencing, and assistive technolo-
gies, where latency-critical noise suppression and spatial
adaptability are required.

Complementing these hardware-software optimiza-
tions, MEMS microphone arrays serve as the acoustic
backbone of embedded audio-visual systems, enabling the
low-power, high-density configurations required for real-
time beamforming [9]. Their compact form factor and
minimal energy consumption align seamlessly with the
resource constraints of embedded platforms discussed ear-
lier, while their ability to be densely packed into arrays en-
sures precise directional audio capture. This work focuses
on a system that pairs deep learning-based visual tracking
with acoustic beamforming. The visual component iden-
tifies and localizes objects in 3D space using stereo cam-
eras or monocular depth estimation, while simultaneously
classifying targets or other noise sources. This spatial and
semantic data is then used to steer a compact MEMS mi-
crophone array, which performs beamforming to capture
directional audio aligned with the tracked object’s posi-
tion. By dynamically updating the beamformer’s focus
based on real-time visual inputs, the system maintains ac-
curate audio capture even as targets move.

The main contribution of this work is the develop-
ment of a compact and efficient embedded platform that
integrates deep learning-based 3D object tracking with dy-
namic MEMS beamforming, enabling robust and adaptive
directional audio capture in real-world dynamic environ-
ments.

2. SYSTEM DESIGN

At a high level, the architecture comprises three core com-
ponents: (1) a visual perception module using a stereo
or monocular camera, (2) a planar concentric circular
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MEMS microphone array for audio capture, and (3) a
NVIDIA Jetson Orin Nano embedded processor respon-
sible for coordinating tracking, classification, and beam
steering. The components are interconnected via a low-
latency pipeline, enabling closed-loop interaction between
vision and acoustics. Fig. 1 represents the high-level block
diagram design of the interconnected systems.

Stereo Camera

© O

MEMS Array

Jetson Orin Nano

=l

Figure 1. High level block diagram design.

2.1 Vision system design

In order to provide visual-aid information to the system,
low-cost USB cameras were chosen for the design. These
cameras not only offer a budget-friendly solution but also
deliver sufficient resolution and frame rates for real-time
object tracking and depth estimation.

To achieve accurate tracking and depth measurement,
we performed tests with two different approaches. First,
a stereo camera is employed to compute disparity maps,
which are converted into 3D spatial coordinates. Sec-
ond, a single-camera depth-estimation model based on
pre-trained neural networks is employed. This model pro-
cesses the 2D images captured by the monocular camera
and infers depth information from visual cues, such as tex-
ture gradients and object occlusions. The latter approach
allows for a more compact final system since it only re-
quires one camera, but relies on having enough training
data of the deployment environments as well as access to
hardware acceleration.

The camera module is integrated with the embed-
ded device through a dedicated image processing pipeline
where video streams are pre-processed to correct for lens
distortions and to normalize illumination, ensuring consis-
tent input quality. These pre-processed images are subse-
quently fed into the deep learning models that detect and
track objects, providing dynamic positional data. The ob-
ject tracking system continuously updates the position of
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targets, which in turn guides the beamforming algorithms.
This dynamic integration allows the system to adjust the
focus of the microphone array in real time, aligning with
the tracked object’s location for improved audio capture
in cluttered and noisy environments.

2.2 Hardware and array design

A concentric circular microphone array design was chosen
due to its symmetry, allowing flexible steering capabilities
and good frequency response. This configuration is par-
ticularly advantageous for applications requiring omnidi-
rectional sound capture and beamforming, as the circular
arrangement ensures uniform spatial resolution in all di-
rections. Additionally, the concentric structure enables the
array to operate effectively across a wide range of frequen-
cies, making it suitable for tasks such as sound source lo-
calization, speech enhancement, and acoustic scene analy-
sis. The designed array, shown in Fig. 2.2, is comprised of
two concentric circular rings of radius 2.5 cm and 4.5 cm
respectively, as well as a central microphone.

Figure 2. Final designed and assembled printed cir-
cuit board.The array design contains R = 3 rings
of radii p = {0,2.5,4.5} cm. The microphones are
equally spaced along each ring: for r = 2, A¢ =
m/2rad, and for r = 3, A¢ = 7/4rad.

To construct the array, ICS52000 MEMS micro-
phones were utilized. These microphones are designed
to operate in a daisy-chain configuration, which simplifies
data acquisition by consolidating the digitized audio data
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from all microphones into a single serial stream. Specifi-
cally, a modified I2S interface is employed, where the data
from each microphone is multiplexed in the time domain
using a simple TDM synchronization pulse, ensuring effi-
cient and synchronized transmission.

The PCB designed to house the microphones was
meticulously engineered to maintain signal integrity. Ter-
mination resistors were placed adjacent to the micro-
phone data line pins, and controlled impedance tracks
were traced to match the selected clock frequency. To
minimize signal propagation delays, the clock and data
lines were arranged in a branch-style topology. Further-
more, signal buffers were incorporated to ensure sufficient
driving strength for both the host interface and the micro-
phones, preserving signal amplitude and integrity. High-
bandwidth, rail-to-rail, unity-gain stable OPA2810 opera-
tional amplifiers were specifically chosen for this purpose,
providing robust performance and reliability in the array’s
operation [10].

2.3 Target tracking

To calculate the steering vector and beamforming coef-
ficients for the microphone array, the elevation (6y) and
azimuth (¢() angles are calculated from the estimated tar-
get position in space following Equations 1 and 2. The
geometric model of the system is depicted in Fig. 3
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Figure 3. System geometry.
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The target tracking subsystem enables real-time 3D
localization of objects to dynamically guide the acoustic
beamforming process. To achieve robust detection and
spatial estimation, we utilize a fine-tuned YOLOvV10n net-
work for detecting common audio sources like persons
and speakers, to estimate bounding boxes of target ob-
jects in sequential video frames. By focusing on the cen-
troids of the detected bounding boxes, the system extracts
2D positional data, which is fused with depth informa-
tion from either monocular depth estimation models or
stereo camera disparity maps to resolve 3D coordinates.
The YOLOv10n architecture was selected for its compu-
tational efficiency, leveraging nested sparse gradients and
adecoupled head design to reduce latency while maintain-
ing detection accuracy in cluttered environments [11].

3. EXPERIMENTS AND RESULTS

To evaluate the complete system, several experiments
were performed. First, different depth-estimation ap-
proaches were assessed in terms of accuracy and latency.
Next, the full beamforming pipeline was tested in a con-
trolled environment inside an anechoic chamber. A sam-
pling frequency of 8 kHz was selected to reduce latency
by limiting the number of samples.

3.1 Depth estimation

Classic stereoscopic cameras determine depth by using
binocular disparity and triangulation. They work very
well in environments with plenty of texture but require
accurate calibration and can struggle in areas lacking de-
tail [12]. On the other hand, advanced infrared (IR) sys-
tems use active illumination to boost performance in low-
texture or low-light conditions, although this improve-
ment comes with increased costs due to the need for IR
emitters, specialized sensors, and additional synchroniza-
tion hardware. Monocular deep learning methods sidestep
much of this hardware complexity by inferring depth from
single images through learned data priors. However, these
methods often produce results that lack absolute scale, de-
pend heavily on the quality of training data, and demand
significant computational resources. In controlled, metric-
critical applications such as robotics, stereoscopic IR sys-
tems are preferred, while monocular approaches offer a
more cost-effective and scalable option for consumer de-
vices, even if they sometimes sacrifice accuracy and gen-
eralization [13].

We benchmark some of the most popular methods
with our system to evaluate their depth estimation perfor-
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mance and latency. Table. 1 presents the average timings
of 30 runs for each method, along with their standard de-
viations, measured in seconds.

Table 1. Average timings for the tested depth estima-
tion methods expressed as mean+standard deviation.

Method Timing (seconds)
CREStereo [14] 1.71 £0.45
Depth-AnythingV2 [15] 1.33 £ 0.20
Depth-AnythingV?2 (metric) | 0.15 £ 0.09
Depth-pro [16] 3232+ 1144
RAFT-Stereo [17] 5.67 +£1.07
RT-Mono-Depth [18] 0.16 £ 0.08
RT-Mono-Depth (small) 0.11 £ 0.09
SGBM [19] (filtered) 1.73 £0.26
StereoNet [20] 1.26 + 0.39

As shown in the comparison, several deep learning-
based models compute depth maps significantly faster
than the standard SGBM algorithm. This difference
in speed is mainly due to the additional processing
steps required by SGBM, including residual filtering and
weighted least squares, which are necessary when us-
ing a low-cost visual spectrum stereo camera. Figure 4
shows the resulting depth maps, from left to right: filtered
SGBM, the fastest deep learning model (RT-Mono-Depth-
Pro), and the slowest method overall (Depth-Pro). Al-
though the evaluated environment is particularly challeng-
ing (due to the likely very limited presence of anechoic
chambers in the training data) the larger deep learning-
based models are still able to capture fine details in the
scene, but struggle with real distances. Nonetheless,
we chose to use filtered SGBM as the depth estimation
method for the following experiments because of its ro-
bustness.

3.2 Beamforming performance

To evaluate the integrated system in isolation, its per-
formance was first assessed under controlled conditions.
In an anechoic chamber, a dual-source setup was ar-
ranged with two household loudspeakers serving as sound
sources and a dummy head simulating the target source
(illustrated in Fig. 5), ensuring a noise-isolated, reflection-
free environment. To simulate dynamic conditions, the
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Figure 4. Depth maps obtained for Filtered-SGBM, RT-Mono-Depth and Depth-pro methods. The colorbars

show the estimated depth in meters.

experiment was repeated with one moving source, where
a person carrying one of the loudspeakers walked at a nor-
mal pace toward the fixed source.

Figure 5. Experimental setup for the static anechoic
test.

To extract relevant data, we conducted experiments
using two pairs of acoustic signals. In the first scenario,
the sources emitted pure tones at 2 kHz and 3 kHz, respec-
tively. In the second one, the 3 kHz tone was replaced by
broadband noise, specifically a voice sequence from the
TIMIT dataset [21]. Object detection was employed to lo-
calize the target of interest (i.e., person-like objects), and
beamforming was performed using a time-domain delay-
and-sum algorithm. The steering vector was computed
based on the estimated direction of arrival (DoA). Fig-
ure 6 shows the visual and orientation information ex-
tracted from an arbitrary video frame captured during the
source emission.

In the two-tone experiment, the signal-to-interference
ratio (SIR) between the 2 kHz and 3 kHz signals was mea-
sured over time to evaluate the system’s ability to separate
sources. Fig. 7 (top) displays ASIR results for static and

Left Frame Detections

02495 21493} —! .22.‘1?)

Figure 6. Target detection employed for the static
experiment.

dynamic conditions, while the bottom plot shows the esti-
mated azimuth angle of the moving source. Due to vari-
ability in source emission stability, the analysis compares
differences in SIR between non-beamformed and beam-
formed signals rather than absolute values. The beam-
formed results indicate an improvement in SIR, reflecting
the system’s capacity to estimate the target source position
and partially isolate the desired signal. In the dynamic
case it can clearly be seen how when the moving target
approaches the fixed noise source, the SIR declines as the
spatial proximity of the two emitters causes the beam to
align with both simultaneously.

For the experiment where the source of interest emit-
ted speech audio, the SIR metric was calculated by by fol-
lowing Eq. 3.

ASIR = SIRBeamformed - SH%Not—beamformed [dB] ) (3)

PWRSpeech - PWRint
dB
PWRin ) [dB]

SIR = 10log,, <

where ASIR quantifies the improvement in the SIR
achieved through beamforming. The SIR is computed
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Figure 7. Top plot shows the differences between the
beamformed and non-beamformed SIR for the dy-
namic and static experiments for the two tone case.
Bottom plot shows the estimated azimuth angle for
the target source.

based on the difference between the estimated power of
the speech signal and that of the interference, normal-
ized by the interference power. The interference power
PWR;, is estimated by integrating the power spectral
density within a 100 Hz bandwidth centered at the known
interference tone frequency band.

4. CONCLUSIONS

In conclusion, this work demonstrates the effectiveness
of combining visual depth estimation with beamforming
techniques for audio source separation. Our experimen-
tal results in an anechoic chamber show that the system
successfully improves signal-to-interference ratio in both
static and dynamic scenarios, with particularly notable
performance when spatial separation between sources is
maintained. While deep learning-based depth estima-
tion methods showed promising speed advantages, fil-
tered SGBM provided the most robust performance de-
spite its higher computational requirements, especially in
challenging visual environments that were likely under-
represented in training datasets. These findings highlight
the importance of selecting appropriate depth estimation
techniques based on application-specific requirements for
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Speech-Tone Experiment

ASIR Curves for Static Experiment
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Figure 8. Top plot shows the differences between
the beamformed and non-beamformed SIR for the
dynamic and static experiments where the signal em-
mitted by the target of interest was speech. Bottom
plot shows the estimated azimuth angle for the target
source.

reliability versus processing speed.

5. ACKNOWLEDGMENTS

The authors express their sincere gratitude to Ricardo
Moreno and Jesus Pefia Rodriguez for their invaluable
support and assistance, and to Luis A. Azpicueta Ruiz
for providing access to the anechoic chamber at the
Signal Theory and Communications Department of the
University Carlos III de Madrid. Their help and en-
couragement were instrumental in completing this study.
This work has been supported by Grants TED2021-
131003B-C21 and TED2021-131401A-C22 funded by
MCIN/AEI/10.13039/501100011033 and by the “EU
Union NextGenerationEU/PRTR”, as well as by Grants
PID2022-1370480B-C41 and PID2022-1370480A-C43
funded by MICIU/AEI/10.13039/501100011033 and
“ERDF A way of making Europe”

6. REFERENCES

[1] S.-C. Hsia, S.-H. Wang, C.-M. Wei, and C.-Y. Chang,
“Intelligent object tracking with an automatic image

11™* Convention of the European Acoustics Association
Milaga, Spain * 23" — 26" June 2025 *

SOCIEDAD ESPAROLA
SEA DE ACUSTICA



(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

FORUM ACUSTICUM
ails EURONOISE

zoom algorithm for a camera sensing surveillance sys-
tem,” Sensors, vol. 22, no. 22, 2022.

T. Price, D. Howard, A. Lewis, and A. Tyrrell, “Adap-
tive microphone array beamforming for teleconfer-
encing using vhdl and parallel architectures,” in Pro-
ceedings of the Seventh Euromicro Workshop on Par-
allel and Distributed Processing. PDP’99, pp. 13-18,
1999.

H. Mizoguchi, Y. Tamai, K. Shinoda, S. Kagami,
and K. Nagasghima, “Visually steerable sound beam
forming system based on face tracking and speaker ar-
ray,” in Proceedings of the 17th International Con-
ference on Pattern Recognition, 2004. ICPR 2004.,
vol. 3, pp. 977-980 Vol.3, 2004.

Z. Shi, L. Zhang, and D. Wang, “Audio—visual sound
source localization and tracking based on mobile robot
for the cocktail party problem,” Applied Sciences,
vol. 13, no. 10, 2023.

C. Godard, O. Mac Aodha, M. Firman, and G. J. Bros-
tow, “Digging into self-supervised monocular depth
prediction,” October 2019.

W. Sun and L. Qiu, “Visual-assisted sound source
depth estimation in the wild,” 2022.

P.-L. Asselin, V. Coulombe, W. Guimont-Martin, and
W. Larrivée-Hardy, “Replication study and bench-
marking of real-time object detection models,” 2024.

J. Chen, J. Chen, H. Min, and X. Wang, ‘“Real-time
embedded implementation of adaptive beamforming
for medical ultrasound imaging,” in 2016 Sixth Inter-
national Conference on Instrumentation & Measure-

ment, Computer, Communication and Control (IM-
CCC), pp. 356-360, 2016.

J. Ortigoso Narro, R. Moreno, D. de la Prida Ca-
ballero, M. Raiola, and L. Azpicueta-Ruiz, “64-
microphone module for a massive acoustic camera,’
09 2024.

Texas Instruments, “OPA2810 Data Sheet.”
https://www.ti.com/product/OPA2810,
2023. [Accessed 2025-03-06].

A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han,
and G. Ding, “Yolov10: Real-time end-to-end object
detection,” arXiv preprint arXiv:2405.14458, 2024.

[12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

4387

R. I. Hartley and A. Zisserman, Multiple View Geom-
etry in Computer Vision. Cambridge University Press,
ISBN: 0521540518, second ed., 2004.

Z. Zhang, Y. Zhang, Y. Li, and L. Wu, “Review
of monocular depth estimation methods,” Journal of
Electronic Imaging, vol. 34, Mar. 2025.

J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang,
J. Liu, H. Fan, and S. Liu, “Practical stereo matching
via cascaded recurrent network with adaptive correla-
tion,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16263—
16272, 2022.

L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng,
and H. Zhao, “Depth anything v2,” arXiv:2406.09414,
2024.

A. Bochkovskii, A. Delaunoy, H. Germain, M. Santos,
Y. Zhou, S. R. Richter, and V. Koltun, “Depth pro:
Sharp monocular metric depth in less than a second,”
arXiv, 2024.

L. Lipson, Z. Teed, and J. Deng, ‘“Raft-stereo: Mul-
tilevel recurrent field transforms for stereo match-
ing,” in International Conference on 3D Vision (3DV),
2021.

C. Feng, Z. Chen, C. Zhang, W. Hu, B. Li, and L. Ge,
“Real-time monocular depth estimation on embedded
systems,” in IEEE International Conference on Image
Processing, ICIP 2024, Abu Dhabi, United Arab Emi-
rates, October 27-30, 2024, pp. 3464-3470, IEEE,
2024.

H. Hirschmuller, “Stereo processing by semiglobal
matching and mutual information,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 2, pp. 328-341, 2008.

X.-S. Contributors, “X-StereoLab stereo match-
ing and stereo 3d object detection toolbox.”
https://github.com/meteorshowers/
X-StereoLab, 2021.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus,
D. S. Pallett, and N. L. Dahlgren, “Darpa timit acous-
tic phonetic continuous speech corpus cdrom,” 1993.

11™* Convention of the European Acoustics Association
Milaga, Spain * 23" — 26" June 2025 *

SOCIEDAD ESPAROLA
SEA DE ACUSTICA



