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ABSTRACT

Local active noise control (ANC) algorithms are often
based on adaptive filters, requiring an error signal to oper-
ate. For optimal performance, this error signal should be
captured at a position as close as possible to the desired
point of cancellation. However, in many situations, this
is not feasible without invading the listener’s space. In
such cases, virtual sensing algorithms such as the remote
microphone technique (RMT) can be employed to estimate
the signal using nearby sensors and domain knowledge.
The RMT relies on filters, calculated in a training phase
based on recorded scenarios. To ensure sufficient perfor-
mance under varied acoustic conditions and geometrical
configurations, a suitable filter set must be selected during
operation from a pre-calculated database encompassing all
potential scenarios. This paper proposes a novel approach
for an online estimation of the observation filter in the RMT,
based on a convolutional neural network. By providing
correlation metrics and coordinates as input features, ef-
ficient asynchronous computation on external processing
units is possible. Handling various acoustic scenarios with
variable virtual error microphone position, this approach
renders the use of any filter selection logic obsolete.
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1. INTRODUCTION

Active noise control (ANC) is a widely used technique for
noise reduction [1]. Secondary sources emit control signals
that mimic the primary disturbances at a point of interest
with an inverse phase. When executed properly, this ap-
proach can lead to a substantial reduction in noise through
destructive interference. While global ANC approaches
aim to reduce disturbances throughout the entire space, lo-
cal ANC targets selected points of cancellation. The latter
technique has been shown to control a larger frequency
bandwidth with fewer transducers [2]. An inherent issue of
local ANC is its limited spatial extent, often referred to as
“zone of quiet” [3—5], which corresponds to the area where
at least 10 dB noise reduction can be achieved. The extent
of this region usually scales inversely with the controlled
bandwidth in diffuse sound fields [3,5]. Outside this zone
of quiet, the ANC system can actually increase the sound
pressure [3]. Another position-dependent issue arises when
considering common ANC system architectures. Many
implementations are based on adaptive filters [6-8] to
compensate for slight changes in the scenario during opera-
tion. However, adaptive filters for ANC usually require the
residual error signals and transfer functions between the
secondary sources and the points of cancellation [1,9]. A
mismatch between the estimated and actual error signals or
transfer paths can lead to a deterioration in noise reduction
performance or even render the system unstable [10, 11].

As it is often not possible to place sensors at the
desired points of cancellation without invading the listener’s
space [12], so-called virtual sensing techniques [13—15] are
employed to estimate the signal of virtual error microphones
at the points of cancellation, using signals from nearby
physical microphones and domain knowledge. Due to
the limited spatial extent of local ANC and the sensitivity
of certain virtual sensing algorithms to changes in the

11" Convention of the European Acoustics Association
Milaga, Spain « 23" — 26 June 2025 »

SOCIEDAD ESPAROLA

SEA DE ACUSTICA



FORUM ACUSTICUM
ails EURONOISE

acoustic scenario [16], a large variety of filters for different
situations is calculated in advance and either switched [11]
or interpolated [17] during operation to account for time-
variant changes.

The dependency on position and acoustic scenario
spans a multivariate space, requiring a large database of
precomputed filters as well as a filter-selection mechanism
during operation. Recently, neural networks have been
utilized to handle some of these challenges - for example
for modelling secondary paths [18], selecting filters from
a database with a classifier network [19], or applying
physically informed neural networks for virtual sensing in
simple, static acoustic scenarios [20].

We propose a method for the online estimation of
the observation filter in the remote microphone technique
(RMT) [14] with variable virtual microphone position,
based on a lightweight convolutional neural network (CNN).
The underlying RMT is explained in section 2 before
describing the proposed approach in section 3. It is tested
for different source and receiver configurations in sections 4
and 5, followed by a conclusion and outlook in section 6.
Code and data are openly accessible [21].

2. REMOTE MICROPHONE TECHNIQUE

The RMT [14] is a commonly used technique for virtual
sensing. It is based on the assumption that the residual
noise e[n] at the listener’s position can be decomposed into
contributions from the primary noise sources d, 1] and the
control signals u[n], filtered by the transfer function G.(z)
between the secondary sources and the listener’s position.
The residual error is expressed as

E(2) = D.(2) + G.(2)U(2), (D

with E(z), D.(z), and U(z) being the z-transform of e[n],
d.[n], and u[n], respectively. For simplicity, it is assumed
that only a single d, [n], e[n], and u[n] exist, forming an
acoustic single-input-single-output system.

On the other hand, the R physical remote

microphones also record a mixture m[n] =
T . .

[mo[n] mi[n] mg-1[n]]" of primary distur-

bances d,[1] = [dmo[n]  dm,1[n] dmr-1n]]"
and control signal u[n], filtered by the transfer paths
G (2) [Gm0(2) G (2) Gmro1(2)]"
between the secondary sources and remote microphones.
Using these definitions, the remote microphone signals in
z-domain are expressed as

M(z) =D,,(2) + Gm(2)U(z) .
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Figure 1. Block diagram of the remote microphone
technique (RMT).

A block diagram of the RMT is shown in figure 1.

By subtracting the filtered control signal from the remote

microphone signals, the primary disturbances at the remote
positions

D, (2) = M(2) = G (2)U(2) 3)

can be extracted. @ As the actual secondary paths
G,u(z) are usually unknown, a modelled G,,(z) is
used to calculate D,,(z). The latter signals are then
processed by a so-called observation filter O(z) =
[00(z) O1(2) Ogr-1(z)] to get an estimate for
the primary disturbances at the virtual error microphone

D.(z) = 0(2)Dy(2). )

Finally, the control signal U(z), filtered by a model for the
secondary path G.(z) to the virtual error position, is added
to get an estimate for the residual error signal

E(z2)=D.(2) +G.(2)U(2). ®)

The secondary paths G,,(z) and G.(z) can be esti-
mated relatively easily by measuring the transfer function
between secondary loudspeakers and the remote micro-
phones or a temporarily placed microphone at the virtual
position, respectively. The observation filter is computed
in a training phase using recordings of the primary dis-
turbances at the remote and virtual microphone positions.
The filters themselves are estimated for example via cross-
correlations [22] or cross spectral densities (CSDs) [23]
between remote and virtual error microphones, forming
an inverse problem. To cover several virtual microphone
positions and acoustic scenarios, different filter sets must
be obtained and switched during operation [23].

In the next section, an approach to estimate the observa-
tion filter during operation using a CNN is described. The
neural network is capable of estimating filter coefficients
for variable virtual microphone positions as well as various
primary source configurations.
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3. NEURAL OBSERVATION FILTER

We propose an approach to estimate the finite impulse
response (FIR) coefficients for the observation filter using
a CNN. An overview of the system architecture is shown
in figure 2.

dm > 0(:) |92
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Figure 2. Architecture of the proposed deep observa-
tion filter.

3.1 Input features: GCC-PHAT

Applying a neural network to a raw audio signal is generally
associated with high computational complexity [24]. As
ANC with virtual sensing is often deployed on embedded
and low-power hardware, we chose to pre-process the inputs
by calculating the generalized cross-correlation functions
(GCC) [25] between all unique combinations of remote
microphones. A similar approach is commonly used in
acoustic beamforming applications [26]. This approach
enables us to update the observation filter coefficients
asynchronously to the filter process itself.

The GCC ry,x,[k] with lag k between two signals
x1[n] and x;,[n] is calculated as

P k] e () S (£) ©6)

where S, x, (f) refers to the CSD between x; [n] and x3[n],

. IDFT . .

f to a frequency index, and «—— to an inverse discrete
Fourier transform (IDFT). ¢ ( f) is an additional frequency
weighting to sharpen peaks in the GCC [25]. A widely
used weighting is the so-called phase transform (GCC-
PHAT) [25]

1

|Sx0 ()]

This measure has proven to be useful in a pilot study [27]
and is also applied in the here presented model. To further

YpHAT(f) = @)
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reduce the number of input parameters for the neural net-
work, only the values of the GCC covering the microphone
array aperture around zero lag are considered ! .

The GCC-PHAT is computed online during operation
to account for time-variant changes. Let Sxm,, (f) be the
CSD estimated using only the signals in a current time
frame 7. An exponentially weighted moving average

SAxlxz,t(f) = agxlxz,t (f) + (1 - a)SAxlxz,t—l(f) (8)

with smoothing factor « is applied to average over a larger
time scope as well as to put an emphasis on recent values
in order to track time-variant changes.

Additionally, the neural network receives the Cartesian
coordinates of the virtual error microphone as well. These
coordinates can be obtained for example by head-tracking
systems [23, 28] in real-world applications.

3.2 Model architecture

The network itself has an encoder-decoder-like architec-
ture. In this publication, four remote microphones with
an aperture of less than 30 cm are used for virtual sensing.
This means, that six GCCs for the unique microphone
combinations with 29 values each 2 are computed and used
as input for the neural network.

The encoder consists of four sequential stages, com-
pressing the temporal input dimension while expanding
channels. Each stage comprises two 1D convolutional
layers with a padding of 1. Kernel size and stride are
configured to compress the temporal dimension.

The encoding stage operates independently of the vir-
tual microphone position. To track the virtual microphone’s
position, the output of the encoder is flattened and concate-
nated with the three Cartesian coordinates before being
passed to two linear layers. The output of these bottleneck
layers is then reshaped and expanded again in the decoder.
The latter consist, similarly to the encoder, of four stages
with two transposed 1D convolutional layers each. The
layer parameters are adjusted such that the output shape
corresponds to 4 sets of FIR filters with 65 coefficients
each. All layers use leaky ReL.U activation functions. An
overview of the model architecture with its parameters
is provided in table 1. The CNN has in total 366.94 k
parameters and requires 1.34 M operations per inference.

I'E.g. if the maximum time-of-flight between microphones in
the array corresponds to 10 samples, only the 21 central values of
the GCC are used.

2[03m
343m)s

- 16 000 samples/ s] = +14 samples around zero lag
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4. TRAINING

To train and assess the model, a synthetic dataset is cre-
ated in pyroomacoustics [29]. Four remote microphones
are positioned at the Cartesian coordinates (0.1,0.1,0.1),
(0.1,-0.1,-0.1), (-0.1,0.1,-0.1), (-0.1,-0.1,0.1) m,
forming as tetrahedral arrangement with an aperture of
28.3cm. A single virtual microphone is placed near the
origin of coordinates. Its exact position is randomly varied
for each scene with a distance of up to 5 cm from the centre
of the tetrahedron. A single primary source is positioned
at a distance of 1 m with random direction of arrival in
free field conditions. The source emits coloured broadband
noise with a power spectral density proportional to 1/5,

Table 1. Structure of the neural network, consisting
of 1D convolutional (Conv1d), linear, and transposed
1D convolutional layers (ConvT1d).

Layer Shape Kernel Stride Pad
In Out
Convld 6x29 16x29 3 1 1
Convld 16x29 16x14 4 2 1
Convld 16x14 32x14 3 1 1
Convld 32x14 32x7 4 2 1
Convld 32x7 64x7 3 1 1
Convld 64x7 64X3 4 2 1
Convld 64x3 128%3 3 1 1
Convld 128%x3 1283 3 1 1
Flatten 128x3 384
Linear 384 +3 256
Linear 256 384
Unflatten 384  128%3
ConvTld 128x3 64x9 5 3 2
ConvTld 64x9 64%9 3 1 1
ConvTld 64x9 32x17 3 2 1
ConvT1ld 32x17 32x17 3 1 1
ConvT1d 32x17 16x33 3 2 1
ConvTld 16x33 16x33 3 1 1
ConvTld 16%x33 4x65 3 2 1
ConvTld 4x65 4x65 3 1 1
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where 8 € [0;2] and the root mean square (RMS) level
between —40dB and —10dB are randomly selected. All
random variables are drawn from uniform distributions. In
total, 50 000 scenes were generated, each lasting 10s ata
sample rate of 16 kHz and a speed of sound of ¢ = 343 m/s.
The dataset has been split for training and validation with
an 80/20 ratio.

The network is trained by minimizing the mean squared
error (MSE) loss between the predicted primary distur-
bances d, [n] at the virtual microphone and the known
target signal d.[n]. Since the MSE is calculated in time
domain, phase errors which are critical for ANC are in-
herently accounted for. For a level invariant loss [30], the
signals are normalized by the target signal’s RMS value.

The CSDs for the GCC are estimated using Welch’s
method [31] with a FFT size of 128, 50 % overlap and
a Hann window. The GCC estimates are exponentially
weighted as described in equation (5) with @ = 0.01 as
all presented scenes are stationary. Given the aperture of
the remote microphone arrangement, only the central 29
values of the GCCs between the six unique microphone
combinations are used as input for the neural network as
described in section 3.2.

The observation filter is modelled as FIR filter using
the overlap-save method. For this simple anechoic scenario,
a filter length of 65 taps is chosen. The overlap-save
algorithm operates with a segment length of 128 samples
and a stepsize of 64 samples. Coeflicients are updated every
500 ms, meaning that the neural network is inferred twice
per second. To enhance robustness, the network is trained
to estimate past samples of the primary disturbances instead
of the current ones, as seen in the delayed RMT [22,32].
With a delay of 25 samples, all relevant parts of the FIR
coefficients are shifted into a causal region.

The model has been trained using the Adam optimizer
[33] at a learning rate of 1e—4. A weight decay of 1e—8 was
applied to prevent overfitting and exceedingly large filter
coeflicients. Training was conducted for 1000 epochs in
PyTorch with a batch size of 100, requiring approximately
16 h on a single NVIDIA GeForce RTX 3080 GPU.
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5. RESULTS

The presented model is evaluated regarding the influence
of position information, as well as for different primary
disturbance directions and virtual microphone positions. It
is assessed using a normalized mean square error (NMSE)

Sg €lnl”
NMSE =10lo _ C))
510 (znzo d[n]?
as single-value broadband metric, where
e[n] = de[n] - de[n]. (10)
The estimation error [23]
SEE (f) )
E(f)=10lo —, 11
(f) 210 (Sdede (f) ( )

based on the power spectral densities S¢¢ (f) and Sg, 4, (f)
of e[n] and d[n], respectively, is used to analyse the spectral
properties of the presented approach.

5.1 Availability of position data

In a first experiment, the potential improvement in estima-
tion accuracy by providing the virtual microphone position
is assessed. As mentioned in section 3.2, the position of the
virtual error microphone is provided in Cartesian coordi-
nates both during training and validation. As a baseline for
comparison, the same model is validated without accurate
position data by supplying only the centre coordinates of
the microphone arrangement as virtual microphone posi-
tion, regardless of its actual location. Additionally, another
model is trained and validated entirely without valid posi-
tion data as well. All experiments are performed on the
same dataset.

Table 2. Mean validation NMSE in dB with standard
deviation (SD) with and without provided coordinates
of the virtual microphone.

Position data NMSE in dB

Mean SD

train+val -33.53 9.90
train only -17.67 14.35
none -13.42 12.24

% 0 /_”-:-_'J
~ "L T
b5 S TE-
g /‘/‘r”
g —25 __./‘,—” Position data
s % -
8 LT~ train+val
% = = train only
—50
g == none
172}
m —r —— T
10 10°
Frequency / Hz

Figure 3. Validation estimation error in dB for mod-
els trained and validated with and without accurate
position data of the virtual microphone.

As seen in table 2, the NMSE increases by more
than 15 dB when the network is supplied with inaccurate
position data during validation. This result is expected, as
other authors have demonstrated that accurate tracking of
the (virtual) error microphone position can significantly
improve ANC performance [11, 13,23]. If the network
is even trained without position data, the mean NMSE
rises further, but its variance slightly decreases. The
mean estimation error in frequency domain in figure 3 can
provide more insights into the model’s characteristics. It
performs best towards low frequencies with an estimation
error around —50 dB, but still maintains less than —20 dB
error even at the upper end of the assessed spectrum. The
spectral tilt can be attributed to the spectral distribution of
the primary disturbances during training, which emphasises
low frequencies, ranging from brown to white noise. The
estimation error for the conditions without accurate tracking
data exhibits a constant bias across the whole assessed
spectrum, indicating that accurate tracking information
enhances performance even towards very low frequencies.

5.2 Virtual error position

In a second evaluation, the effect of the actual position of
the virtual error microphone on estimation performance is
investigated. For this analysis, the validation set is divided
into five distinct subsets based on the distance r of the virtual
microphone from the centre of the arrangement. Table 3
shows only a minor decline in estimation performance and
a slight increase in variance as the virtual microphone
moves away from the centre. The mean NMSE rises by
approximately 0.5 dB to 1 dB per cm of distance from the
centre. Larger deviations occur at both the start and end of
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the assessed range, meaning the increase of NMSE is not
strictly proportional to absolute distance.

Table 3. Mean validation NMSE in dB with standard
deviation (SD) for different virtual position distance r
from the tetrahedron’s centre.

Range NMSE in dB
Mean SD

r €[0.0,1.0)cm -35.02 9.55
re[1.0,2.0)cm -34.07 9.57
r e [2.0,3.0)cm -33.48 10.00
re[3.0,4.0)cm -33.05 9.97
r € [4.0,5.0)cm -32.06 10.14

5.3 Primary source direction

Finally, the influence of the primary disturbance direction
is examined. Two extreme cases are considered:

1. Sound arriving from the direction of a remote mi-
crophone, and

2. Sound propagating along the normal vector of the
tetrahedron’s surfaces.

For both cases, a tolerance margin of 10° is applied to the
direction of arrival.

As table 4 shows, only minor differences in NMSE are
observed depending on the primary source direction. The
difference in mean NMSE is not statistically significant
(p = 0.762) according to an independent samples t-test.
This suggests that estimation performance is unaffected by
the primary disturbance direction.

6. CONCLUSION

In this article, a neural network-based method for estimating
the observation filter in the remote microphone technique
for local active noise control has been presented. It features
an encoder-decoder-like architecture implemented as a
convolutional neural network.

For efficient operation, the neural network receives
GCCs between all remote microphones, along with the
coordinates of the virtual microphone, as input features.
It computes the FIR coefficients of the observation filter,
which can be used in conventional filter architectures. With

110

Table 4. Mean validation NMSE in dB with stan-
dard deviation (SD) for primary sources in direction
of a single remote microphone or normally to the
tetrahedron surfaces with 10° tolerance.

Direction NMSE in dB
Mean SD

mic -34.31 9.36
surface -34.58 9.62

this structure, filtering can be performed on low-latency
hardware while allowing asynchronous coefficient estima-
tion on an external (co-)processor or neural processing unit
(NPU) for optimal performance.

It has been demonstrated that supplying the network
with accurate position information of the virtual micro-
phone significantly enhances estimation accuracy. The
lowest NMSE is achieved when the virtual microphone
is positioned near the centre of the tested arrangement,
whereas NMSE only slightly increases with distance from
the centre. However, no statistically significant differences
dependant on the primary source direction could be ob-
served.

In future studies, the presented model will be expanded
to handle time-variant scenarios with moving virtual po-
sitions and primary disturbances. It is anticipated that
recurrent architectures will yield noticeable improvements
for these cases. Additionally, the model’s capability to
process scenarios with multiple primary sources and nar-
rowband signals will be evaluated, especially in conjunction
with an adaptive ANC algorithm to assess noise reduction
performance.
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