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ABSTRACT

Our everyday auditory experience is shaped by the acoustics
of the indoor environments in which we live. Room acoustics
modeling is aimed at establishing mathematical representations
of acoustic wave propagation in such environments. These rep-
resentations are relevant to a variety of problems ranging from
echo-aided auditory indoor navigation to restoring speech un-
derstanding in cocktail party scenarios. Many disciplines in sci-
ence and engineering have recently witnessed a paradigm shift
powered by deep learning (DL), and room acoustics research is
no exception. The majority of deep, data-driven room acous-
tics models are inspired by DL-based speech and image process-
ing, and hence lack the intrinsic space-time structure of acoustic
wave propagation. More recently, DL-based models for room
acoustics that include either geometric or wave-based informa-
tion have delivered promising results, primarily for the problem
of sound field reconstruction. In this review paper, we will pro-
vide an extensive and structured literature review on deep, data-
driven modeling in room acoustics. Moreover, we position these
models in a framework that allows for a conceptual comparison
with traditional physical and data-driven models. Finally, we
identify strengths and shortcomings of deep, data-driven room
acoustics models and outline the main challenges for further re-
search.

Keywords: room acoustics, deep learning, data-driven model-
ing, literature review

1. INTRODUCTION

People spend about 90 % of their time indoors [1], hence our
auditory system has been trained to perceive and process sound
only after it has been “shaped” by the acoustics of our inside
living environments. Whereas room acoustics is potentially ben-
eficial for perceptual tasks and experiences including human in-
door navigation by means of echolocation [2, 3] and audience
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engagement in concert halls [4], it may also hamper speech un-
derstanding [5] and contribute to the cocktail party effect [6], in
particular for hard-of-hearing people [7]. In addition to this dis-
tinction of room acoustics being desired or undesired, problems
involving room acoustics can further be classified into forward
and inverse problems. Forward problems are aimed at predicting
the sound field (or sound signal at one position) in a room, when
information about the sound sources (i.e., location, directivity,
pressure signal) and the room (i.e., geometry, boundary proper-
ties) are given. Inverse problems instead focus on the retrieval of
source or room parameters from sound field measurements.

Various perspectives on room acoustics have emerged over
the past century. The physical perspective considers room acous-
tics as a space-time or space-frequency physical phenomenon
that can be modeled as an interior boundary value problem, and
has been applied primarily to forward problems [8, 9]. The ar-
chitectural perspective, propelled by the seminal work of Sabine
[10], features compact, empirical or statistical descriptors of
room acoustics such as reverberation time (T60), early decay
time (EDT), and clarity index (C50) [11]. These descriptors cap-
ture the temporal, spectral and/or spatial acoustic behavior of the
room at a macroscopic level. Their estimation from sound field
measurements is at the core of many inverse problems [12, 13].
In the signals and systems perspective, point-to-point acoustic
responses within a room are modeled as linear time-invariant
(LTI) systems, which can be represented as linear filters [14, 15]
or state-space models [16]. This perspective is used for both for-
ward and inverse problems considered above, and often involves
the processing of acoustic data acquired from microphone signal
measurements. Finally, since 2015 a data science perspective
on room acoustics has materialized. In this perspective, forward
and inverse problems are tackled as predictive learning problems
from simulated and/or measured data. As opposed to LTI system
modeling, deep learning models involving nonlinear operations
are commonly used [17–21].

2. LITERATURE REVIEW

2.1 Concise overview of traditional room acoustics models

Traditional room acoustics models (i.e., those developed before
the deep learning era) can be categorized along two dimen-
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sions: the first dimension represents the degree to which mod-
els are based on room measurements (“data-driven models”) or
on physics first principles (“physical models”), while the second
dimension indicates whether the model assumes a geometric or
wave-based sound behavior. The leftmost part of Figure 1 illus-
trates this categorization and guides the reader through the below
concise overview of traditional models.

The architectural and signals and systems perspectives on
room acoustics mostly rely on impulse response models, i.e.,
the room impulse response (RIR) [22] and spatial RIR (SRIR)
[23]. Other data-driven models are modal response models,
e.g., common-acoustical-pole and zero (CAPZ) [24], orthonor-
mal basis function (OBF) [25], and parallel filter (PF) mod-
els [26]. Data-driven models are more effective for room acous-
tics applications when a physical prior is included in the model
structure [27]. A geometric prior is used in RIR decomposi-
tion models such as the spatial decomposition method (SDM)
[28], whereas wave-based priors are used in wave decomposi-
tion models, e.g., wave field analysis (WFA) [29], plane-wave
decomposition (PWD) [30], and spherical-harmonic decompo-
sition (SHD) [31]. Data-driven models incorporating a physical
prior based on the boundary integral equation (BIE) [32] include
the equivalent source model (ESM) [33–35] and the boundary
integral operator state-space (BIOSS) model [36]. Even though
the BIE is a wave-based prior, it asymptotically admits a geo-
metric solution [37], hence these models are capable of repre-
senting both wave-based and geometric sound behavior. Purely
physical models have mainly been used in virtual acoustics and
include reflection path models [38] (e.g., image source models
(ISM) [39], ray tracing (RT) [40], and beam tracing (BT) [41]),
delay networks (e.g., feedback delay networks (FDN) [42], dig-
ital waveguide networks (DWN) [43], and scattering delay net-
works (SDN) [44]), and discretized partial differential equation
(PDE) models (e.g., boundary element (BEM) [45], finite ele-
ment (FEM) [46], finite difference (FDM) [9,47], and finite vol-
ume models (FVM) [8]).

2.2 Purely data-driven deep learning models

Over the past decade, many scientific disciplines have witnessed
a paradigm shift driven by deep learning (DL). This paradigm
shift has also occurred in room acoustics research, and as a
consequence, the state of the art has meanwhile fundamentally
changed, as illustrated in the rightmost part of Figure 1. Not
surprisingly, research on deep, data-driven room acoustics mod-
eling has started by considering inverse problems. In these
problems, the input is typically a reverberant sound signal from
which information on the underlying room acoustics or sound
source is to be inferred. Most of the relevant literature considers
speech source signals, hence allowing to use DL model struc-
tures that have previously shown their merit in speech analysis
problems such as automatic speech recognition [48,49], speaker
identification [50], or speech emotion recognition [51, 52].

The first research efforts in deep, data-driven room acous-

tics modeling have been focused on inverse problems in which
a high-dimensional input (e.g., a reverberant speech signal cap-
tured by one or more microphones) is transformed into a low-
dimensional output, considering model structures that are often
adopted from other DL application areas such as image process-
ing and computer vision. The most widely studied problem in
this context is the estimation of room acoustic parameters from
reverberant speech [13]: reverberation time (T60) [53–66], clar-
ity index (C50) [58, 59, 63–65, 67, 68], direct-to-reverberant ra-
tio (DRR) [56, 57, 63–65], early decay time (EDT) [58], defini-
tion (D50) [58], center time (Ts) [58], speech transmission index
(STI) [59, 64], speech intelligibility index (SII) [59], room vol-
ume [60, 66, 69], and source distance [70]. In a similar context,
the classification of rooms from reverberant speech has been
investigated [71, 72]. Even if initially multi-layer perceptron
(MLP) model structures were used [53, 57], it was soon realised
that long-term temporal characteristics of room reverberation are
highly relevant, motivating the use of recurrent neural networks
(RNNs) with long-short term memory (LSTM) layers [54] or
their bidirectional version (BLSTM) [67]. Alternatively, convo-
lutional neural networks (CNNs) have been considered [55–60],
and in particular their combination with recurrent structures into
convolutional recurrent neural networks (CRNNs) [61–64, 68],
possibly including an attention mechanism [70, 71], has become
an established model structure for the room acoustic parameter
estimation task. More recently, the popular Transformer model
structure [73] has also been used for this task [65, 66, 69].

A similar evolution from MLP-based over C(R)NN-based to
Transformer-based models has occurred for other inverse prob-
lems in which a low-dimensional output is sought. In room in-
ference problems, the estimation of room boundary characteris-
tics [74] (e.g., reflection coefficients or impedance values) has
been tackled with MLPs [75, 76], CNNs [75], and CRNNs [77],
whereas the room geometry can be inferred by means of CNNs
[76,78,79] or CRNNs [80,81], possibly with an attention mech-
anism [82]. For the room geometry inference task, also a combi-
nation of a residual network (ResNet) with an autoencoder (AE)
has been proposed [83], while Transformer-based models were
observed to perform below expectations [84]. Finally, sound
source localization from multi-microphone signal observations
has been achieved with MLPs [85], CNNs [85] (in particular
its 3D-CNN extension [86]), CRNNs [85] (possibly combined
with a classical MUSIC localization method [87]), AEs [85], and
Transformers [85].

In acoustic signal enhancement problems, the DL model in-
put (i.e., speech corrupted by artefacts such as echo, reverber-
ation, or interfering speech) and output (i.e., enhanced speech)
have similar dimensions. As the focus of these problems is on
the (speech) source signal, the room acoustics modeling aspect
is often implicit, hence model structures originally proposed for
speech analysis problems have also found their way here. How-
ever, in order to produce a high-dimensional output, the mod-
els typically lack pooling layers or, more recently, adopt an
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structure for the room acoustic parameter estimation task. More recently, the popular Transformer model 
structure [70] has also been used for this task [71-73]. 

Figure 1: Classification of room acoustics models before (left) and after (right) the deep learning paradigm 
shift. Blue and green blocks represent the prior art and contributions of our former ERC-SONORA project, 
respectively. Red blocks represent the prior art regarding deep, data-driven room acoustics modeling, yellow 
blocks indicate the anticipated contributions of the proposed ERC-DIORAMA project. Acronyms are defined in 
the text.  
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Figure 1. Classification of room acoustics models before (left) and after (right) the deep learning paradigm shift.
Acronyms are defined in the text.

encoder-decoder structure reminiscent of U-Net, variational AE,
and Transformer architectures. Deep, data-driven approaches to
acoustic echo cancellation, until recently an archetypical exam-
ple of linear estimation theory [88], have been extensively stud-
ied, resulting in algorithms based on RNNs [89–92], possibly
with an attention mechanism [93, 94], CRNNs [95–101], pos-
sibly combined with a Kalman filter [102]. In many of these
algorithms, the use of gated recurrent units (GRUs) was found
beneficial [92, 94, 100–102]. In acoustic howling suppression,
narrowband interferences due to closed-loop instability need to
removed [103], which has been achieved with CRNNs [104],
possibly involving GRUs and an attention mechanism [105],
and with a hybrid RNN-Kalman filter [106]. For dereverber-
ation [107], traditionally considered one of the most challeng-
ing inverse problems in room acoustics, various model struc-
tures have been considered. In the single-microphone case,
MLPs [108], RNNs [109], possibly conditioned on the room’s
energy decay curve (EDC) [110], CNNs [111], possibly with
an attention mechanism [112], generative adversarial networks
(GANs) [113], and a combination of U-Net and Transformer
models [114] have been used. Also the single-channel sound
source separation problem [115] has been addressed jointly
with the dereverberation problem using RNNs [116] and U-Nets
[117]. Whereas the multi-microphone dereverberation prob-
lem seems somewhat underexplored, with the exception of the
T60-conditioned MLP model proposed in [118], multi-channel
source separation has received more attention with the devel-
opment of CNN [119], CRNN [120], and U-Net-based mod-
els [121, 122], often designed to work with a spatially prepro-
cessed input such as interaural level/phase differences [119], am-
bisonic signal components [121], and direction-dependent [121]
or location-dependent [122] features. The state-of-the-art Spa-

tialNet approach achieves joint multi-channel speech separation
and enhancement by clustering of acoustic transfer functions in
a combined Transformer and CNN model structure [123]. For
the problem of active noise control [124], MLPs [125], CRNNs
[126, 127], and their combination [128] have been considered.
Finally, the problem of acoustic matching (i.e., transforming a
reverberant sound signal such that it perceptually matches a dif-
ferent room than the one where it was recorded), is typically ad-
dressed by means of generative models such as WaveNets [129]
or GANs [130].

Yet another category of problems are those where the desired
DL model output is a RIR, a set of RIRs, or a sound pressure
field. These problems are fundamentally different from those
discussed above, and often require the use of a generative DL
model structure. In blind acoustic system identification [131],
the aim is to estimate RIRs from reverberant speech observa-
tions, and an encoder-decoder structure is generally preferred:
the encoder serves to estimate a latent room acoustics repre-
sentation from the reverberant signal (using CNNs [132, 133]
or ResNets [134]), while the decoder adheres to a GAN struc-
ture to generate RIRs from the latent embedding [132–135]. In
the context of room equalization [136], a U-Net model structure
has been proposed to generate a spatially averaged room trans-
fer function (RTF) from a set of measured RTFs [137]. In sound
field reconstruction [138], one aims to use a set of sound pressure
(or RIR) measurements to predict the sound pressure (or RIR)
at receiver positions where no measurements have been made.
This problem has been addressed with U-Nets [139, 140], con-
ditionally invertible neural networks (CINNs) [141], and Trans-
formers [142]. In artificial reverberation synthesis [15], RIRs
are generated for given source and receiver positions and room
specifications. Deep, data-driven approaches to this problem in-

4067



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

clude the estimation of FDN parameters from measured RIRs
using CNNs [143] and the generation of binaural RIRs for mov-
ing receivers with VAEs [144]. Note that even though artificial
reverberation synthesis is traditionally a different problem than
SFR, the distinction between both problems becomes somewhat
ambiguous in a data-driven setting, as the input to both problems
consists of room acoustics measurements. Finally, the prob-
lem of upmixing RIRs to SRIRs [145] has been tackled with
VAEs [19] and GANs [146].

2.3 Deep learning models with physical priors

Despite their excellent performance for parameter or signal esti-
mation problems, the models discussed above are not suitable (or
not optimal) for problems in which RIRs or space-time sounds
pressure fields need to be computed, due to the fact that the in-
trinsic structure of acoustic wave propagation (e.g., representa-
tion of time delays, preservation of space-time relations) is not
efficiently represented in the model structure. This has given rise
to the development of deep, data-driven models that are partially
physics-informed, either via geometric or wave-based priors.

Geometry-based DL models (not to be confused with “Geo-
metric DL” which refers to a particular instance of neural net-
works [147]) have been developed for artificial reverberation
synthesis by (1) explicitly encoding the scene geometry with
MLPs (PointNet [148]) or GANs with graph convolution lay-
ers (Mesh2IR [149, 150]), (2) conditioning the DL model on
the source/receiver positions and room geometry with GANs
(Fast-RIR [151]) or (V)AEs [152, 153], (3) conditioning the DL
model on early reflections with GRU-based CNNs [154] or AEs
(DECOR [155]), or (4) using geometric information only with
MLPs (DeepNeRAP [156]) or neural operators replacing the
PDE (DeepONet [157]). The strategy of conditioning the DL
model on the receiver position has also been used in the con-
text of sound field reconstruction with U-Net [158] and dynamic
kernel [159] model structures. A more prominent geometry-
based room acoustics model for sound field reconstruction is the
Neural Acoustic Field (NAF) [160], which represents the con-
tinuous mapping from source/receiver pairs to RIRs by means
of MLPs, conditioned on local geometric information present
at the source and receiver locations. Extensions of NAF in-
volve the inclusion of boundary information, i.e., boundary ge-
ometry (INRAS [161]) and material properties (NACF [162]),
and joint audio-visual scene generation (Few-ShotRIR [163],
NeRAF [164], AV-NeRF [165], SOAF [166]). A similar con-
cept named Novel-View Acoustic Synthesis (NVAS) has also
been applied to video-aided sound field reconstruction [167]
and to the inverse problem of joint source localization and re-
covery [168]. Finally, geometry-based DL has also resulted
in novel sound source localization methods by (1) integrating
the ray-space transform into CNNs [169], (2) exploiting shift-
equivariance [170] and rotation-equivariance [171] in CNNs, (3)
enforcing geometric proximity in the embedding space [172],
and (4) combining pairwise networks conditioned on micro-

phone pair positions (Neural-SRP [173]).
Wave-based DL models are primarily based on physics-

informed neural networks (PINNs). The vanilla PINN consists
of an MLP-based deep neural network (DNN) which is trained
on a loss function that includes a regularization term imposing
the acoustic wave equation, and has been successfully applied
to artificial reverberation synthesis [174] and sound field recon-
struction [175, 176]. PINN variations for sound field recon-
struction involve the use of trigonometric activation functions
(SIREN [177–179]), regularization with the Helmholtz equa-
tion [180], and a deep kernel method regularized by the wave
equation [181]. Finally, another wave-based DL model for sound
field reconstruction consists in the estimation of PWD coeffi-
cients by means of a GAN (PWD-GAN [182, 183]).

3. RESEARCH PERSPECTIVES

From the above literature study, it is clear that deep learning
holds great potential for room acoustics modeling. We end this
review paper by formulating three prominent perspectives for fu-
ture research.

Firstly, data availability remains the first and foremost re-
quirement in the development of deep, data-driven models. Over
the past five years, we have witnessed a strong rise in the avail-
ability of high-quality, large-scale, and open-access datasets of
room acoustics measurements in diverse conditions and mea-
surement setups, e.g., [139, 184–198]. The main challenge in
developing additional datasets is to reconcile the conflicting re-
quirements of designing setups that correspond to realistic au-
dio scenes (e.g., with moving and directional sources and micro-
phones) while allowing for accurate data labeling (e.g., in terms
of source and microphone positions and orientations).

Secondly, a more fundamental understanding is required of
why deep, data-driven models appear to be highly suitable for
room acoustics modeling. Two key elements of deep, data-
driven models are their nested model structure consisting of
composed functions referred to as layers, and the nonlinear ac-
tivation functions used in these layers. It is not well understood
how nesting and nonlinearity contribute to the accurate and ef-
ficient modeling of room acoustics, in particular as these prop-
erties seem to contradict the widely accepted premise that room
acoustics can be modeled as a linear, time-invariant process.

Thirdly, upon comparing our classification of traditional
models with deep, data-driven models for room acoustics in Fig-
ure 1, there is an apparent gap between geometry-based and
wave-based deep, data-driven room acoustics models. Given the
asymptotic geometric interpretation of the wave-based BIE dis-
cussed above [37], the key to combining geometric and wave-
based information may lie in the inclusion of boundary infor-
mation both in the model structure and in the model training
strategy of DL models. A first and promising result in this direc-
tion consists in the use of physics-informed boundary integral
networks (PIBI-Nets) for sound field reconstruction [199].
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