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ABSTRACT

The evaluation of speech intelligibility is crucial for opti-
mising speech-based systems. Existing objective metrics
primarily focus on acoustic analysis, often neglecting the
audiovisual (AV) nature of speech. To address this limita-
tion, this study proposes AVIntell, a deep learning-based
model that integrates subjective intelligibility AV data for
intelligibility prediction. In addition, we introduce NAPE-
AV, a novel dataset specifically designed for the assess-
ment of AV intelligibility. The model uses the comple-
mentary strengths of convolutional neural network (CNN)
and long short term memory (LSTM) to predict speech in-
telligibility by comparing processed audio with reference
speech. Experimental results demonstrate a strong corre-
lation with human perceptual scores, surpassing the state-
of-the-art speech intelligibility metrics including STOI
and MOSA Net+ across all evaluation metrics. These find-
ings confirm the advantages of integrating AV intelligibil-
ity data collected for a more accurate and robust assess-
ment of speech intelligibility.
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1. INTRODUCTION

Speech intelligibility assessment metrics are critical for
optimising the performance of wide range of speech-based
communication systems. Intelligibility is typically de-
fined as the proportion of correctly identified words within
a given sentence [1]. These metrics can be broadly cate-
gorised into subjective and objective metrics. Subjective
evaluation involves human listeners to assess how well
speech can be understood, typically through structured
listening tests. These tests are widely recognised as the
gold standard for assessing speech intelligibility [2–4].
While these tests yield highly accurate measurements,
they necessitate the involvement of trained personnel and
are often time-consuming [3, 4]. To overcome the chal-
lenges, studies have developed complementary assess-
ment approaches combining both subjective and objective
methods. Subjective evaluation involves human listen-
ers who assess how well speech can be understood, typi-
cally through structured listening tests. Evaluation metrics
have been developed to estimate intelligibility automati-
cally, enabling efficient and scalable assessment without
the need for human listeners.

Objective intelligibility metrics can be further cate-
gorised into intrusive [5] and non-intrusive [6]. Intrusive
metrics require a clean reference signal, whereas non-
intrusive metrics do not require a reference signal. Al-
though non-intrusive methods are more practical for real-
world scenarios, their generalisation abilities are limited
compared to intrusive approaches [7]. However, it is im-
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portant to note that both intrusive and non-intrusive met-
rics typically assess only the audio modality, whereas
real-world communication is inherently audiovisual (AV),
which may impact perceived speech quality and intelligi-
bility.

In the literature, extensive work has been done to de-
velop speech evaluation metrics that aim to correlate with
human perceptual judgments [1, 8]. However, these met-
rics face two primary limitations. Firstly, they have not
been extensively validated across diverse datasets beyond
their training sets, raising concerns about their general-
isability. Secondly, they rely exclusively on audio-only
(AO) data, despite real-world speech perception being in-
herently multimodal, incorporating both auditory and vi-
sual cues. This limitation reduces the ecological validity
of these metrics, as they fail to capture the role of visual
articulatory cues in speech comprehension, which is par-
ticularly beneficial for both normal-hearing and hearing-
impaired individuals [9]. Integrating AV human intelligi-
bility data into model training significantly enhances the
robustness and real-world applicability of these metrics.

This study introduces an end-to-end neural net-
work architecture designed to predict speech intelligibil-
ity scores by jointly analysing processed and reference
speech signals. The model is built with CNN and LSTM
to exploit the spatio-temporal nature of the input data. The
proposed model is evaluated against state-of-the-art objec-
tive metrics, including STOI, eSTOI, and MOSA-Net+.
MOSA-Net+ is a non-intrusive model whereas the pro-
posed model follows an intrusive approach. Comparing
both intrusive and non-intrusive methods ensures a com-
prehensive assessment of intelligibility scores across dif-
ferent evaluation paradigms.

Furthermore, many existing intelligibility metrics
have not been extensively validated on datasets beyond
those originally used for their development. The predom-
inant reliance on AO datasets fails to capture real-world
conditions where visual cues, such as the facial expres-
sions of the speaker, significantly improve intelligibility
[9]. When comparing AV subjective data to current objec-
tive metrics, a notable discrepancy emerges, highlighting
the limitations of traditional approaches. This study aims
to bridge this gap by developing a metric that integrates
both AO and AV modalities, thereby improving ecologi-
cal validity and the accuracy of intelligibility assessments.

The key contributions of this study are as follows:

• We develop a novel dataset containing both AO
and AV subjective speech intelligibility evalua-

tions. The dataset incorporates clean, noisy, and
enhanced speech samples, with enhancement per-
formed using two state-of-the-art systems: an AO
denoiser [10] and an AV speech enhancement
model [11]. This collection represents the first
intelligibility dataset featuring these specific con-
ditions while utilising a balanced British English
speech corpus.

• We propose a novel hybrid deep learning frame-
work for intelligibility prediction. This innova-
tive approach is trained and evaluated using first of
its kind AV subjective intelligibility data, combin-
ing the strengths of multiple neural architectures to
achieve robust performance.

• We perform extensive evaluation of our proposed
approach with state-of-the-art objective evaluation
metrics including STOI, eSTOI and MOSA Net+.

2. RELATED WORK

The assessment of intelligibility metrics has a long his-
tory, dating back to the 1940s with the development of
the articulation index [12]. Subsequent advancements in
experimental methodologies led to significant refinements
of articulation index, culminating in the speech intelligi-
bility index (SII) [13]. Both articulation index and SII
quantify speech intelligibility by analysing the contribu-
tion of different frequency bands to overall understand-
ing. These contributions are modelled as a function of
the signal-to-noise ratio (SNR) within each band, where
higher SNR values indicate better speech perception. SII,
in particular, incorporates weighting factors to account for
the varying importance of different frequency bands in hu-
man speech perception, offering a more refined and stan-
dardised approach to intelligibility assessment. An intel-
ligibility score is then calculated by taking a weighted av-
erage across frequency bands, which has been shown to
correlate well with subjective intelligibility for stimuli de-
graded by additive noise. The speech transmission index
(STI) is another well-known intelligibility metric widely
used for assessing speech intelligibility in various acous-
tic environments [14]. The STI methodology is similar
to the SII, as both are based SNRs across multiple fre-
quency bands. However, in the STI framework, the SNR
for each frequency band is specifically related to the re-
duction of amplitude modulations caused by the transmis-
sion system. The SII and STI are widely established met-
rics used by researchers and audiologists, yet they present
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significant limitations. First, both metrics, being based on
long-term statistics, fail to accurately account for degra-
dations caused by non-linear, time-varying noise sources
such as competing talkers and wind [15]. Second, nei-
ther metric adequately addresses distortions introduced by
speech enhancement algorithms [16]. Third, these mod-
els are trained exclusively on audio, limiting their ability
to incorporate multimodal contextual cues that could en-
hance speech quality and intelligibility assessment.

To address these limitations of the SII and STI, re-
searchers have developed range of intelligibility metrics
targeting specific types of signal degradation. These
metrics consider various forms of distortion, including
additive noise, reverberation, auditory thresholds, band-
width reduction, interframe transitions (IFTs), environ-
mental noise, and linear distortions. While each pro-
posed metric demonstrates particular strengths in address-
ing specific aspects of speech degradation, a compre-
hensive solution remains elusive. The well-known in-
telligibility metrics that overcome some of these limita-
tions include the coherence SII [17], the Extended SII
(ESII) [15], the Quasi-Stationary STI (QSTI) [18], the
Normalised Covariance Measure (NCM) [19], the Tempo-
ral Fine-Structure Spectrum-based Index (TFSS) [20], the
Hearing-Aid Speech Perception Index (HASPI) [21], the
Christiansen-Pedersen-Dau metric (CPD) [22], the Short-
Time Objective Intelligibility (STOI) [23] and Extended
STOI (eSTOI) [24].

In addition, the following metrics are described in de-
tail, as they were used for comparative evaluation of the
proposed model.

STOI is considered a benchmark objective intelligi-
bility metric due to its strong correlation with the results
of the subjective listening test [23]. STOI calculates tem-
poral envelopes from both clean and modified speech, pro-
ducing values between 0 and 1, where 1 represents perfect
intelligibility. The metric uses a time-frequency (T-F) de-
pendent intermediate intelligibility measure that decom-
poses signals into T-F regions, followed by energy clip-
ping and normalisation. Intelligibility predictions are de-
rived from cross-correlations between processed and clean
signals across different T-F cells.

eSTOI [24] was developed to address the limitations
in STOI, specifically its poor performance with modu-
lated noise sources, such as amplitude-modulated Gaus-
sian noise. While STOI computes correlation between
clean and modified envelopes over short time segments,
eSTOI operates in spectral domain, enabling more effec-
tive identification of clean speech glimpses. Moreover, the

clipping procedure was eliminated to enhance mathemat-
ical tractability. The implementation of the eSTOI metric
used in this study was gained from the developers official
repository.

MOSA-Net+ [25] is a deep neural network ( DNN)
non-intrusive multi-objective speech assessment frame-
work that incorporates whisper, a large-scale weakly su-
pervised model, to generate robust acoustic features for
speech quality and intelligibility prediction. The archi-
tecture employs cross-domain features from three dis-
tinct sources: (1) traditional spectral features extracted
via Short-Time Fourier Transform (STFT), (2) waveforms
processed using adaptable filters from a convolutional net-
work, and (3) latent representations generated by whisper.

Overall, STOI and eSTOI remain widely used bench-
marks for objective intelligibility assessment, demonstrat-
ing strong correlations with subjective listening tests.
While these intrusive methods offer reliable performance,
they rely on access to a clean reference signal, limiting
their applicability in real-world scenarios. In contrast,
MOSA-Net+ represents a more recent advancement in
non-intrusive intelligibility assessment, leveraging deep
learning and large-scale pre-trained models to improve
generalisation across diverse conditions. However, de-
spite these developments, existing intelligibility metrics
remain constrained by their reliance on AO data, over-
looking the multimodal nature of speech perception. This
limitation highlights the need for novel approaches that
integrate AV information to enhance the ecological valid-
ity of intelligibility assessments. The proposed model in
this study aims to address these gaps by incorporating AV-
based speech intelligibility data, offering a more compre-
hensive and robust evaluation framework.

3. PROPOSED FRAMEWORK

3.1 Framework DNN architecture

Figure 1 presents a novel intelligibility framework. The
proposed framework was evaluated using a trained from
scratch model. The proposed intelligibility framework
builds upon the architecture of InQSS [26], a non-
intrusive quality assessment method. This framework
was further refined and trained using a novel NAPE-
AV Speech Intelligibility (NAPE-AV) dataset, which was
specifically collected to facilitate human speech intelligi-
bility assessment. The result is an intrusive metric that
leverages both audio and visual modalities to evaluate
speech intelligibility.
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Figure 1. Model structure of the DNN framework.

The input to the framework consists of two spectro-
grams: the target (ST ) and the reference (SR), each rep-
resented as matrices of dimensions (H×W), where H de-
notes the height (representing time steps) and W repre-
sents the width (representing frequency bins). These spec-
trograms are then passed through a series of convolutional
layers for feature extraction. Specifically, each spectro-
gram undergoes four 2D convolution operations, with ker-
nel size K = (3×3) and increasing filter counts f=16, 32,
64, 128. The output of each convolutional layer generates
feature maps, where the number of filters increases at each
layer. After the feature extraction step, the features from
the target and reference spectrograms are concatenated
into a single feature vector. The concatenated features are
then processed by a Bidirectional Long Short-Term Mem-
ory (BiLSTM) layer with 128 hidden units, which cap-
tures temporal dependencies and contextual information.

Finally, the processed features pass through two fully
connected dense layers. The first dense layer has 128

units, while the second has a single unit, producing the
final output, which is an intelligibility score. Before the
final classification, a global average pooling operation is
applied to reduce the dimensionality of the feature maps,
allowing the model to output a scalar value representing
the utterance-wise intelligibility score.

4. EXPERIMENTS

In this section, we evaluate the proposed approach using
IEEE sentences dataset.

4.1 Dataset

The dataset utilised in this study is based on the British
IEEE sentences [27], comprising 72 lists of 10 phoneti-
cally balanced and homogeneously structured utterances.
The utterances were recorded by a male speaker for both
testing and training sets. The video data captured using an
iPad Pro (12.9-inch, 5th generation) at 30 fps in 4K reso-
lution, while audio was recorded via the omnidirectional
lavalier microphone (Zoom F2) attached to the speaker’s
collar. In order to create noisy conditions, a male multi-
talker babble was generated using IEEE sentence lists
recorded by four different male speakers, which were then
randomly mixed. All recordings, including the clean ut-
terances and the multi-talker babble, were conducted in
the auralisation suite at Edinburgh Napier University [28].
Each sentence in the dataset is evaluated based on five
keywords per trial.

The SNR for the noisy utterances was randomly se-
lected between the range of 20 dB to -20 dB. These noisy
utterances were processed using two different SE models
for the AO state of the art Facebook denoiser [10] and
for the AV [11] was used. Finally, the clean, noisy and
enhanced utterances were combined to form the listening
test utterance pool. In this study, the proposed assessment
model was evaluated using the NAPE-AV dataset. The
dataset comprised a total of 4,920 utterances, with 984
samples designated for testing and the remaining 3,936
samples used for training and validation.

4.2 Listening test for development of the Dataset

The speech in noise tests were performed on 36 partici-
pants (18 females, 18 males), with ages ranging from 21 to
93 years. The participants were divided into two groups;
group 1 consisted of 18 participants within normal limits
of hearing (9 females, 9 males), group 2 consisted of a
further 18 participants with hearing losses ranging from
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mild to severe (9 females, 9 males). The test for indi-
viduals with normal hearing was performed in noisy and
enhanced conditions. To gain the intelligibility score the
participants were instructed to identify five keywords in
each sentence, with the intelligibility score being calcu-
lated as the number of correctly identified keywords, out
of five per utterance across random SNRs. For the hearing
loss group the noisy condition was performed in unaided
and aided conditions as well as aided in enhanced condi-
tion. Both groups were provided a practice list in both AO
and AV conditions to familiarise themselves with the test
set up. These utterances where excluded from the data
sample used in the model. For the testing 30 sentences
were used for each condition. This totalled 4920 samples
for our dataset.

4.3 Model Training

The model was implemented using PyTorch and trained
on a system comprising an Intel i9 processor, 64 GB
RAM, and dual NVIDIA RTX 2080 Ti GPUs (12 GB
VRAM each). The model is trained over 20 epochs and
optimised by ADAM. The Mean Squared Error (MSE)
loss function is used during model training to measure the
average squared difference between the predicted values
and the actual target values.

4.4 Data pre-processing

The AVintell model employs a systematic preprocessing
pipeline to standardise input audio data. All audio files
are resampled to 16 kHz and normalised to a fixed dura-
tion of six seconds, ensuring temporal consistency across
samples. Raw intelligibility scores, originally rated on a
1–5 scale, are normalised to a continuous 0–1 range while
preserving intermediate values (e.g., 0.2, 0.4). This de-
sign choice aligns with AVintell’s formulation as a re-
gression model rather than a classification system, en-
abling it to predict intelligibility along a continuous spec-
trum. To extract time-frequency representations, the pre-
processing pipeline applies a Short-Time Fourier Trans-
form (STFT) with a 512-point FFT, a 256-sample hop
length, and a Hamming window. The resulting magni-
tude spectrograms are normalised before being reshaped
to match the model’s input format.

5. RESULTS & DISCUSSION

To evaluate the proposed AVIntell model, we adopted
three evaluation metrics: MSE, Linear Correlation Coef-

ficient (LCC), and Spearman’s Rank Correlation Coeffi-
cient (SRCC). Lower MSE scores indicate that the pre-
dicted scores are closer to the ground-truth assessment
scores, whereas higher LCC and SRCC values (ranging
from -1 to 1) indicate stronger correlations between pre-
dicted and ground-truth assessment scores.

Table 1 shows a comparative analysis of AV In-
tell against conventional intrusive intelligibility metrics
(STOI and eSTOI), a state-of-the-art non-intrusive deep
neural network model (MOSA-Net+), and human intelli-
gibility scores. We evaluated all models using LCC and
SRCC, with subjective intelligibility scores serving as the
reference standard. As shown in Table I, the proposed
AV Intell model demonstrates the highest alignment with
human perception, achieving the best correlation scores
(LCC = 0.426, SRCC = 0.438). This indicates that it con-
sistently predicts intelligibility in a manner that reflects
human evaluation more accurately than competing mod-
els.

In contrast, traditional objective metrics such as
STOI and eSTOI exhibit weaker correlations with human
scores. STOI achieves LCC = 0.298 and SRCC = 0.305,
while eSTOI shows a marginal improvement in SRCC
(0.321) but slightly lower LCC (0.296), suggesting that
both fail to capture the nuances of human intelligibility
perception effectively. Although MOSA-Net+ attains the
highest predicted intelligibility score (74.9%), its correla-
tion values (LCC = 0.307, SRCC = 0.307) remain compa-
rable to those of STOI, indicating limited improvement
in perceptual alignment. Furthermore, its higher MSE
(0.155) compared to AV Intell suggests less precise pre-
diction capability.

The strong correlation scores achieved by AV In-
tell, coupled with its closely matched predicted score
(58.041%) to the human intelligibility score (58.05%),
highlight the effectiveness of incorporating visual cues.
These results underscore the limitations of acoustic-only
approaches and the need for multimodal strategies to im-
prove intelligibility prediction. The improvements in LCC
and SRCC demonstrate the proposed model’s superior
ability to model human perception, addressing key short-
comings of existing intelligibility metrics.

Figure 2 illustrates the relationship between intelligi-
bility scores and SNRs. The observed trend shows that the
intelligibility improves as SNR increases, confirming that
higher SNR conditions lead to clear speech perception. At
low SNR levels (-20 to -10 dB), intelligibility remains rel-
atively low (∼0.3 to 0.5) primarily due to significant pres-
ence of background noise. Since different listeners have

5251



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

Table 1. Comparison of the intelligibility metrics.
(Avg Intell indicates average intelligibility)

Model Avg Intell LCC SRCC MSE
Subjective 0.580 - - -
STOI 0.469 0.298 0.305 0.147
eSTOI 0.337 0.296 0.321 0.191
MOSA-Net+ 0.749 0.307 0.307 0.155
AV Intell 0.580 0.426 0.438 0.107

diverse hearing profiles, their perception of intelligibility
across SNR levels differs. Individuals with hearing im-
pairments face greater challenges at low SNRs, as they
face challenges to distinguish speech from noise. Age-
related declines in auditory processing also affect some
listeners. As SNR increases to moderate levels (-10 to 0
dB), intelligibility steadily improves, and at higher SNRs
(5 to 15 dB), it peaks (∼0.7–0.8), with minimal differ-
ences between actual and predicted intelligibility values.
The predicted intelligibility scores closely match the ac-
tual scores, with a minimum difference of 0.02 and max-
imum of 0.08 indicating that the model effectively esti-
mates intelligibility across various SNRs.

Figure 2. A bar graph showing the model predicted
and human scores at the various SNR ranges

Figure 3 shows an analysis of MSE, LCC, and SRCC
across various SNR levels, demonstrating the impacts of
noise conditions on intelligibility prediction accuracy.

The highest SRCC value (0.89) is observed in the (10,
15) dB range, indicating a strong rank correlation under
high-SNR conditions. In contrast, the lowest SRCC value
(0.17) occurs in the (-5, 0) dB range, similar to the LCC
trend, suggesting a weak rank-based correlation in this re-

Figure 3. A bar graph showing the comparison of
model evaluation metrics at the various SNR ranges

gion. SRCC values remain relatively stable in the (-20,
-15) dB (0.41) and (5, 10) dB (0.63) ranges, reflecting
a moderate correlation under mid-range SNR conditions.
Similarly, the highest LCC value (0.71) is found in the
(10, 15) dB range, demonstrating strong linear correla-
tion when noise is minimal. Conversely, the lowest LCC
(0.09) occurs in the (-5, 0) dB range, implying that predic-
tions in this SNR range are less aligned with the ground
truth. Moderate LCC values in the (-20, -15) dB (0.42)
and (5, 10) dB (0.41) ranges further indicate a partial cor-
relation between predicted and actual values under these
conditions.

Since for human listeners with hearing loss and differ-
ent hearing profiles, the low correlation between predicted
and actual intelligibility scores at lower SNRs is attributed
to the compounded effect of both noise and auditory pro-
cessing discrepancies. Individuals with hearing impair-
ments often have a reduced ability to distinguish speech
from background noise, especially in noisy environments
where the SNR is low. This makes it challenging for them
to perceive key speech cues, further deteriorating speech
intelligibility [29]. As a result, even if predictive mod-
els capture some speech features, they fail to accurately
reflect the true intelligibility as experienced by listeners
with hearing loss, leading to lower correlation values in
these conditions.

Another factor contributing to the overall lower LCC
and SRCC results across all SNR ranges, compared to
other models, is the diversity of conditions present in our
dataset. Typically, models are trained under a single con-
dition; however, our dataset incorporates multiple condi-
tions, including noisy, aided noisy, enhanced, and aided
enhanced environments. Additionally, our data encom-
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passes a wide range of hearing abilities, from individu-
als with normal hearing to those with severe hearing loss.
This increased variability in both noise conditions and
hearing profiles introduces more complexity, which may
explain the lower correlation scores. Nevertheless, despite
these lower scores, the model more accurately reflects
real-world listening scenarios, making it highly valuable
for a broad range of testing protocols in future research
and applications.

Across the SNR range, the MSE values remain con-
sistently low, indicating strong model performance. The
lowest MSE (0.07) is observed in the (0,5) dB range, sug-
gesting that the model achieves optimal performance at
this level. One possible reason for this could be the higher
representation of data within these SNR ranges, allow-
ing the model to better learn the underlying trends. Con-
versely, the highest MSE values (0.14 and 0.13) occur in
the (-20, -15) dB and (-10, -5) dB ranges, where noise
conditions are more severe, leading to reduced model per-
formance. However, despite the increased noise, the MSE
values remain relatively low, indicating that the model
maintains a reasonable level of accuracy even in challeng-
ing conditions.

6. CONCLUSIONS

This study introduces AVIntell, a novel deep learning-
based model for speech intelligibility prediction that inte-
grates AV speech intelligibility data. Comparative experi-
mental results demonstrates strong alignment of AVIntell
with human perceptual scores, outperforming traditional
audio-only intelligibility metrics such as STOI and eS-
TOI and deep learning based metrics including MOSA-
Net+ across all evaluation metrics. The inclusion of AV
speech intelligibility data in AVIntell substantially en-
hances intelligibility predictions, particularly in noisy en-
vironments where traditional acoustic-based methods of-
ten struggle. In conclusion, AVIntell introduces a novel
intelligibility prediction model and highlights the poten-
tial for multimodal integration to significantly enhance
the robustness and accuracy of speech intelligibility pre-
diction systems. Ongoing work include development
of a non-intrusive objective intelligibility measure based
on AVIntell. In future, we intend to incorporate visual
cues alongside audio inputs to develop a fully multimodal
speech intelligibility metric.
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