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ABSTRACT* 

In the Japanese livestock industry, while the number of pig 
farms is decreasing, the number of pigs raised per farm is 
increasing, leading to larger-scale operations. This scaling-
up raises the risk of widespread damage from rapid 
infectious disease outbreaks. Furthermore, respiratory 
diseases such as pneumonia inhibit growth, delay shipments, 
and reduce cost-effectiveness for farmers. Consequently, 
there is a demand for systems that can detect illnesses early. 
Previous research constructed a disease diagnosis model 
using the cepstrum and Δ-cepstrum of body-conducted 
sounds from pigs as inputs, employing LSTM. However, 
variations among individual pigs were found to decrease the 
accuracy of the disease diagnosis model. Therefore, this 
study investigates the construction of machine learning 
models for individual subjects, aiming to eliminate the 
effects of individual differences by detecting abnormalities 
on a case-by-case basis. 
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1. INTRODUCTION 

Porcine respiratory diseases cause significant economic 
damage in the livestock industry, with annual losses due to 
Porcine Reproductive and Respiratory Syndrome (PRRS) 
————————— 
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estimated at $664 million annually in the U.S. [1]. Hence, to 
prevent severe complications and widespread infections 
among individuals, the early detection of porkets afflicted 
with respiratory diseases is crucial. Furthermore, the recent 
trend towards large-scale porket farming has exacerbated 
labor shortages, highlighting the need for using technology 
for efficiently monitor the health status of pigs [2]. Mito et 
al. [3] proposed a system that utilizes a microphone array 
and cameras installed in pigpens to detect and locate the 
source of coughing and sneezing sounds, which are 
indicators of porcine respiratory diseases. However, 
environmental noise within pigpens hinders the accurate 
localization of these sounds. M. Guarino et al. [4] 
investigates the use of an intelligent alarm system for early 
disease detection in pigs through online monitoring of 
cough sounds. Initially developed in laboratory settings, the 
system was tested on 44 pigs in field conditions using close-
range microphones. The classification accuracy was 85.5% 
for coughs and 86.6% for other sounds. However, the 
reliance on close-proximity microphones presents practical 
challenges for real-world application, as environmental 
noise impacts performance. Lagua et al. [5] discusses a 
commercially available AI system designed for monitoring 
respiratory health in swine, integrating temperature and 
humidity sensors with audio technologies. The system 
captures body-conducted sounds from individual pigs to 
detect respiratory diseases, employing machine learning 
algorithms for effective disease surveillance and 
management in livestock farming. However, the current 
system still faces limitations, particularly regarding 
accuracy and practical applicability in real-world settings. 
They suggest that further advancements in AI and sensor 
technology are necessary to create smarter, more reliable 
solutions for comprehensive health monitoring in livestock. 
To address this need, we are developing a system that 
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uses ear tag sensors to detect the body-conducted sounds 
of pigs, analyzes the biometric data in the cloud, and 
notifies farmers. Previously, models used cepstrum and 
Δcepstrum as inputs and employed Long Short-Term 
Memory (LSTM) networks for disease diagnosis [6]. 
However, individual differences among pigs caused a 
decrease in model accuracy. Therefore, this study has 
explored constructing individual machine learning 
models for each pig to mitigate the impact of these 
variations by detecting anomalies individually.  
 

2. COLLECTION OF BODY-CONDUCTED 
SOUNDS 

The animal experiment was approved by the Agricultural 
Research Organization's Expert Committee on Experiments. 
Pigs are often fitted with ear-tags for identification. In this 
context, our research group developed ear-tag sensors [7] 
that incorporated electronic circuits and miniature sensors to 
record body-conducted sounds. To collect data from pigs 
with respiratory diseases, we conducted animal experiments 
by intentionally infecting the animals with bacteria. Ear-tag 
sensors were attached to pigs at 5 w of age and data were 
collected during both healthy periods (2–3 d) and periods of 
illness (2 w). 

3. CONSTRUCTION OF THE ANOMALY 
DETECTION MODEL 

The autoencoder is a representative method for anomaly 
detection that compresses and reconstructs input data using 
an encoder and a decoder, respectively. Anomalies are 
detected by measuring the difference (reconstruction error) 
between the input and output. An LSTM model using a 
spectrogram of body-conducted sounds as input can 
accurately distinguish between pre- and post-illness states 
[8]. Building on these findings, the current study aimed to 
achieve high-precision anomaly detection using an LSTM 
autoencoder that used a spectrogram of body-conducted 
sounds as input. 

3.1 LSTM Autoencoder 

The LSTM autoencoder learns a vector representation of 
the time-series data in the encoder and reconstructs the time 
series in the decoder using the current hidden state and 
values predicted at the previous time step. The time-series 
data were denoted as , and the 
hidden state of the encoder at each time point . Here, 

 and  , where c represents the 

number of LSTM units in the encoder's hidden layer. In the 
LSTM autoencoder, the encoder compresses the data in 
chronological order, whereas the decoder reconstructs the 
data in reverse chronological order. Thus, the final state of 
the encoder,  , is used as the initial state for the decoder, 

 , and the time-series data are output in the order of 
[8].  

3.2 Calculation of Reconstruction Error  

Initially, the LSTM autoencoder model generated a 5-s 
output from a 5-s input. When calculating the 
reconstruction error, overlapping 5-s frames were used 
within data segments longer than 14 s. The mean and 
distribution differences of the reconstruction errors obtained 
in this manner were utilized as indicators to classify the 
states before and after disease onset. 

3.3 Kullback-Leibler Divergence  

In this study, the Kullback–Leibler (KL) divergence was 
used to measure the differences between probability 
distributions and served as a classification metric. KL 
divergence is a measure of how one probability distribution 
diverges from the second-expected probability distribution. 
When  and  are discrete probability distributions, KL 
divergence is defined by Equation (1) [9]: 
 

                           (1) 

For instance, if  and  represent the probability 
distributions of the reconstruction errors for healthy data, 
the KL divergence value would be small due to the minimal 
difference between the distributions. However, if  
represents the reconstruction error distribution of data from 
healthy pigs and  represents data from diseased pigs, 
substantial differences in the distributions would lead to a 
larger KL divergence value. Therefore, by substituting 
reconstruction error with KL divergence, an improvement 
in accuracy was achieved. 

3.4 Identification Results for Five Pigs  

The process of training the model and detecting anomalies 
is described. Initially, approximately 50% of the data from a 
single healthy pig were used as training data and 
approximately 20% were used as validation data to build 
the model. Subsequently, the remaining data from healthy 
and diseased pigs were input into the built model as test 
data. The output results were used to calculate the 
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reconstruction error or KL divergence, and the anomalies in 
the pigs were detected based on predefined thresholds. In 
this study, the thresholds were set to the maximum values 
of the reconstruction error or KL divergence from the 
validation data. 
 
To effectively implement an anomaly detection system on a 
real farm, it is imperative to classify all pigs with high 
accuracy, regardless of the presence of symptoms. 
Therefore, pigs A to E, showing a range of lung lesions 
from severe to mild, were used to validate the effectiveness 
of the LSTM autoencoder and KL divergence. Each pig had 
a machine learning model built specifically for it. The 
identification results for pigs A–E are shown in Figures 1–5. 
Except for pig D, the LSTM Autoencoder models using 
spectrograms as input could accurately distinguish between 
the pre-illness and illness states. Moreover, the use of KL 
divergence improved the accuracy of disease identification 
in pigs B –E. However, pig D showed a low identification 
accuracy of 0–20%. This was attributed to the presence of 
significant outliers in the reconstruction error or KL 
divergence of the ’s validation data of pig D, which were set 
as thresholds. Consequently, the data that were actually 
diseased were incorrectly classified as healthy, leading to a 
decrease in accuracy. 
 
 

 

Figure 1. Results for Pig A (severe infection). The 
input was a spectrogram, with thresholds set for each 
method. 'Day' indicates the number of days post-
infection. 
 

 

Figure 2. Results for Pig B (moderate severity 
infection). The input was a spectrogram with a 
threshold set for each method. 'Day' indicates the 
number of days post-infection. 
 
 
 

 

Figure 3. Results for Pig C (moderate severity 
infection). The input was a spectrogram with a 
threshold set for each method. 'Day' indicates the 
number of days post-infection. 

 

Figure 4. Results of Pig D (mild severity infection). 
The input was a spectrogram with a threshold set for 
each method. 'Day' indicates the number of days 
post-infection. 
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Figure 5. Results of Pig E (mild severity infection). 
The input was a spectrogram with a threshold set for 
each method. 'Day' indicates the number of days 
post-infection. 

4. CONCLUSION 

In this study, we addressed the issue of reduced 
identification accuracy due to individual differences by 
building a separate machine-learning model for each pig 
and detecting anomalies. Using an LSTM autoencoder with 
spectrogram inputs enabled highly accurate differentiation 
between healthy and diseased conditions, and incorporating 
the Kullback–Leibler divergence further improved the 
disease detection rates. However, for certain pigs, the 
classification accuracy declined substantially. Therefore, in 
future work, we plan to improve accuracy by using a 
different metric from the KL divergence and tuning the 
model hyperparameters through cross-validation. 
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