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ABSTRACT

In the Japanese livestock industry, while the number of pig
farms is decreasing, the number of pigs raised per farm is
increasing, leading to larger-scale operations. This scaling-
up raises the risk of widespread damage from rapid
infectious disease outbreaks. Furthermore, respiratory
diseases such as pneumonia inhibit growth, delay shipments,
and reduce cost-effectiveness for farmers. Consequently,
there is a demand for systems that can detect illnesses early.
Previous research constructed a disease diagnosis model
using the cepstrum and A-cepstrum of body-conducted
sounds from pigs as inputs, employing LSTM. However,
variations among individual pigs were found to decrease the
accuracy of the disease diagnosis model. Therefore, this
study investigates the construction of machine learning
models for individual subjects, aiming to eliminate the
effects of individual differences by detecting abnormalities
on a case-by-case basis.
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1. INTRODUCTION

Porcine respiratory diseases cause significant economic
damage in the livestock industry, with annual losses due to
Porcine Reproductive and Respiratory Syndrome (PRRS)
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estimated at $664 million annually in the U.S. [1]. Hence, to
prevent severe complications and widespread infections
among individuals, the early detection of porkets afflicted
with respiratory diseases is crucial. Furthermore, the recent
trend towards large-scale porket farming has exacerbated
labor shortages, highlighting the need for using technology
for efficiently monitor the health status of pigs [2]. Mito et
al. [3] proposed a system that utilizes a microphone array
and cameras installed in pigpens to detect and locate the
source of coughing and sneezing sounds, which are
indicators of porcine respiratory diseases. However,
environmental noise within pigpens hinders the accurate
localization of these sounds. M. Guarino et al. [4]
investigates the use of an intelligent alarm system for early
disease detection in pigs through online monitoring of
cough sounds. Initially developed in laboratory settings, the
system was tested on 44 pigs in field conditions using close-
range microphones. The classification accuracy was 85.5%
for coughs and 86.6% for other sounds. However, the
reliance on close-proximity microphones presents practical
challenges for real-world application, as environmental
noise impacts performance. Lagua et al. [5] discusses a
commercially available Al system designed for monitoring
respiratory health in swine, integrating temperature and
humidity sensors with audio technologies. The system
captures body-conducted sounds from individual pigs to
detect respiratory diseases, employing machine learning
algorithms for effective disease surveillance and
management in livestock farming. However, the current
system still faces limitations, particularly regarding
accuracy and practical applicability in real-world settings.
They suggest that further advancements in Al and sensor
technology are necessary to create smarter, more reliable
solutions for comprehensive health monitoring in livestock.
To address this need, we are developing a system that
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uses ear tag sensors to detect the body-conducted sounds
of pigs, analyzes the biometric data in the cloud, and
notifies farmers. Previously, models used cepstrum and
Acepstrum as inputs and employed Long Short-Term
Memory (LSTM) networks for disecase diagnosis [6].
However, individual differences among pigs caused a
decrease in model accuracy. Therefore, this study has
explored constructing individual machine learning
models for each pig to mitigate the impact of these
variations by detecting anomalies individually.

2. COLLECTION OF BODY-CONDUCTED
SOUNDS

The animal experiment was approved by the Agricultural

Research Organization's Expert Committee on Experiments.

Pigs are often fitted with ear-tags for identification. In this
context, our research group developed ear-tag sensors [7]
that incorporated electronic circuits and miniature sensors to
record body-conducted sounds. To collect data from pigs
with respiratory diseases, we conducted animal experiments
by intentionally infecting the animals with bacteria. Ear-tag
sensors were attached to pigs at 5 w of age and data were
collected during both healthy periods (2-3 d) and periods of
illness (2 w).

3. CONSTRUCTION OF THE ANOMALY
DETECTION MODEL

The autoencoder is a representative method for anomaly
detection that compresses and reconstructs input data using
an encoder and a decoder, respectively. Anomalies are
detected by measuring the difference (reconstruction error)
between the input and output. An LSTM model using a
spectrogram of body-conducted sounds as input can
accurately distinguish between pre- and post-illness states
[8]. Building on these findings, the current study aimed to
achieve high-precision anomaly detection using an LSTM
autoencoder that used a spectrogram of body-conducted
sounds as input.

3.1 LSTM Autoencoder

The LSTM autoencoder learns a vector representation of
the time-series data in the encoder and reconstructs the time
series in the decoder using the current hidden state and
values predicted at the previous time step. The time-series
data were denoted as X ={x® x@®, . x®}, and the
hidden state of the encoder at each time point hgj. Here,

i€{1,2,..,L} and th € R® , where c¢ represents the
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number of LSTM units in the encoder's hidden layer. In the
LSTM autoencoder, the encoder compresses the data in
chronological order, whereas the decoder reconstructs the
data in reverse chronological order. Thus, the final state of
the encoder, hf:'] , is used as the initial state for the decoder,

h | and the time-series data are output in the order of

(x® xG-1_ yOY8].

.....

3.2 Calculation of Reconstruction Error

Initially, the LSTM autoencoder model generated a 5-s
output from a 5-s input. When calculating the
reconstruction error, overlapping 5-s frames were used
within data segments longer than 14 s. The mean and
distribution differences of the reconstruction errors obtained
in this manner were utilized as indicators to classify the
states before and after disease onset.

3.3 Kullback-Leibler Divergence

In this study, the Kullback—Leibler (KL) divergence was
used to measure the differences between probability
distributions and served as a classification metric. KL
divergence is a measure of how one probability distribution
diverges from the second-expected probability distribution.
When Q and P are discrete probability distributions, KL
divergence is defined by Equation (1) [9]:

D(PIQ) = ) P(x,)log

i=1

P(x;)
Q(la)

(M

For instance, if Q and P represent the probability
distributions of the reconstruction errors for healthy data,
the KL divergence value would be small due to the minimal
difference between the distributions. However, if Q
represents the reconstruction error distribution of data from
healthy pigs and P represents data from diseased pigs,
substantial differences in the distributions would lead to a
larger KL divergence value. Therefore, by substituting
reconstruction error with KL divergence, an improvement
in accuracy was achieved.

3.4 Identification Results for Five Pigs

The process of training the model and detecting anomalies
is described. Initially, approximately 50% of the data from a
single healthy pig were used as training data and
approximately 20% were used as validation data to build
the model. Subsequently, the remaining data from healthy
and diseased pigs were input into the built model as test
data. The output results were used to calculate the
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reconstruction error or KL divergence, and the anomalies in
the pigs were detected based on predefined thresholds. In
this study, the thresholds were set to the maximum values
of the reconstruction error or KL divergence from the
validation data.

To effectively implement an anomaly detection system on a
real farm, it is imperative to classify all pigs with high
accuracy, regardless of the presence of symptoms.
Therefore, pigs A to E, showing a range of lung lesions
from severe to mild, were used to validate the effectiveness
of the LSTM autoencoder and KL divergence. Each pig had
a machine learning model built specifically for it. The

identification results for pigs A—E are shown in Figures 1-5.

Except for pig D, the LSTM Autoencoder models using
spectrograms as input could accurately distinguish between
the pre-illness and illness states. Moreover, the use of KL
divergence improved the accuracy of disease identification
in pigs B —E. However, pig D showed a low identification
accuracy of 0-20%. This was attributed to the presence of
significant outliers in the reconstruction error or KL
divergence of the ’s validation data of pig D, which were set
as thresholds. Consequently, the data that were actually
diseased were incorrectly classified as healthy, leading to a
decrease in accuracy.
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Figure 1. Results for Pig A (severe infection). The
input was a spectrogram, with thresholds set for each
method. 'Day' indicates the number of days post-
infection.
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Figure 2. Results for Pig B (moderate severity
infection). The input was a spectrogram with a
threshold set for each method. 'Day' indicates the
number of days post-infection.
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Figure 3. Results for Pig C (moderate severity
infection). The input was a spectrogram with a
threshold set for each method. 'Day' indicates the
number of days post-infection.
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Figure 4. Results of Pig D (mild severity infection).
The input was a spectrogram with a threshold set for
each method. 'Day' indicates the number of days
post-infection.
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Figure 5. Results of Pig E (mild severity infection).
The input was a spectrogram with a threshold set for
each method. Day' indicates the number of days
post-infection.

4. CONCLUSION

In this study, we addressed the issue of reduced
identification accuracy due to individual differences by
building a separate machine-learning model for each pig
and detecting anomalies. Using an LSTM autoencoder with
spectrogram inputs enabled highly accurate differentiation
between healthy and diseased conditions, and incorporating
the Kullback—Leibler divergence further improved the
disease detection rates. However, for certain pigs, the
classification accuracy declined substantially. Therefore, in
future work, we plan to improve accuracy by using a
different metric from the KL divergence and tuning the
model hyperparameters through cross-validation.
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