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ABSTRACT
The Trefftz Discontinuous Galerkin (TDG) method is a
discontinuous Galerkin method where the set of basis
functions used in each cell belongs to the nullspace of
the differential operator. For example, for the Helmholtz
equation in two dimensions, the set of basis functions can
be chosen as a set of plane waves with different directions
of propagation.
This is an interesting approach for problems with very
high wavenumber, as much fewer basis functions are
needed to approximate a given solution than if using a
standard DG-FEM method where the basis functions are
polynomials. However, in general, the condition number
of the matrices appearing in the TDG method is much
higher, and can affect the accuracy of the method.
In this work, we show results obtained when a waveguide
with different scatterers is simulated. The radiating con-
ditions are imposed via an approximation of the Neuman
to Dirichlet map which allows us to reduce the number of
cells in the mesh.

Keywords: waveguide, Helmholtz equation, Neumann-
to-Dirichlet map, Trefftz Discontinuous Galerkin.

1. INTRODUCTION

In this work we have implemented a Trefftz discontinuous
Galerkin method [1] to solve the Helmholtz equation in a
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two dimensional infinite waveguide. The accurate simula-
tion of this problem for high wave numbers is challenging
for traditional finite element methods. The use of Per-
fectly Matched Layers (PMLs) is problematic as there are
evanescent modes as well as traveling ones.

For this reason we artificially cut the infinite waveg-
uide at two sections (see Fig. 1) and impose radiating con-
ditions on those boundaries. For non-absorving materials,
the TDG is a generalization of the Ultra Weak Variation
Formulation (see [2] ).

2. THE MODEL

We will model a bounded section of an otherwise infinite
waveguide, as:

Ω :=
{
(x, y) ∈ R2 : −R < x < R, 0 < y < H

}
. (1)

The boundary of Ω consists of two parts. The walls of the
waveguide:

Γ := (−L,L)× {0, H}, (2)

where a sound-hard condition is imposed; and the artificial
boundaries:

Σ := {−L,L} × (0, H), (3)

where a non-reflecting condition based on the Neumann
to Dirichlet operator (NtD) is imposed.

The total field u satisfies the Helmholtz equation in Ω
except for the domain D ⊂ Ω which models the presence
of a sound-soft scatterer. The full model reads:

∆u+ k2u = 0 inΩ \ D
u = 0 on ∂D
∇u · n = 0 onΓ

u− uinc= NtD
(
∇u · n−∇uinc · n

)
onΣ

(4)
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Figure 1. Representation of the computational do-
main Ω as well as its boundaries.

where n stands for the unit outward pointing normal and
uinc is a known incident field.

For the exact solution, the radiation condition is
equivalent to using the more conventional Dirichlet to
Neumann map, i.e.:

∇u · n−∇uinc · n= DtN
(
u− uinc

)
. (5)

We choose to use the Neumann to Dirichlet map as
the discrete solution is only piecewise smooth.

2.1 Neumann to Dirichlet map

The Neumann to Dirichlet map is defined as:

NtD: H̃−1/2 (Σ) → H
1/2 (Σ)

u 7→
∞∑
s=0

1

iβs

∫ H

0

u(η)θs(η) dη θs
(6)

where H̃−1/2 (Σ) is the dual space of

H̃
1/2 (Σ) :=

{
v|Σ : v ∈ H

1/2(∂Ω)
}

(7)

and {θs} is an orthonormal basis of harmonic functions
on the interval (0, H), that is:

θs(y) =

√
2

H
cos

(
sπ

y

H

)
, s = 0, 1, . . . (8)

and βs are the longitudinal wavenumbers:

βs =

√
k2 −

(sπ
H

)2

(9)

of the corresponding modes:

gRs (x)=eiβsxcos
(
sπ

y

H

)
, gLs (x)=e−iβsxcos

(
sπ

y

H

)
,

where the superscripts “L” and “R” stand for modes prop-
agating (see Fig. 2) or exponentially decaying (see Fig. 3)
towards the left or right, respectively.

Figure 2. Depiction of the real part for the fourth
propagating mode.

Figure 3. Depiction of an evanescent mode. The
colormap is capped to the maximum values inside
the computational domain, i.e. the values at the left
boundary.

It is worth mentioning that there are only a finite num-
ber of propagating modes, as for s > kH

π all modes are
evanescent. This allows for approximating the Neumann
to Dirichlet map as a finite sum when implementing the
numerical scheme.

3. DG-TREFFTZ METHODS

Let Th denote a triangular mesh of the domain Ω \D with
diameter h. For each K ∈ Th let

V (K) :=
{
v ∈ H2(K) : ∆v + k2v = 0

}
, (10)

and the “broken” Trefftz space:

V (Th) := {v ∈ L2(Ω \ D) : v|K ∈ V (K)∀K ∈ Th}.
(11)

Functions in V (Th) solve Eqn. (2) at each triangle K,
however they are not smooth, in general, across its bound-
aries.

If we “test” that equation against a function
v ∈ V (Th) and integrate by parts twice we get:∫

∂K

(
∇u · nKv − u∇v · nK

)
dγ = 0, ∀v ∈V (K) (12)

where nK stands for the outward pointing normal with
respect to triangle K. For every side E, given a normal
vector n, we define u+ and u− as the values at the bound-
ary as:

u±(x) := lim
ϵ→0

u(x∓ ϵn) (13)
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This way, we can define the average and the normal
jump:

{{u}} :=
u+ + u−

2
, (14)

|[u]|n := u+n− u−n, (15)

without taking into account the normal chosen.
Now, by adding across all the triangles in Th we get a

condition that enforcess the continuity across triangles:∑
E∈EI

h

∫
E

(u |[∇v]|n −∇u · |[v]|n) dγ

+
∑

E∈Eh\EI
h

∫
E

(u∇v · n−∇u · n v) dγ = 0, (16)

where Eh stands for the set of sides of the mesh (also
known as the skeleton) and E I

h ⊂ Eh for the inner ones.

3.1 Numerical fluxes

As it is done in conventional DG methods, the values of u
and ∇u on the boundaries of the elements are replaced by
numerical fluxes û and ikσ̂.

For an interior edge we set:

û = {{u}}+ b

ik
|[∇hu]|n ,

ikσ̂ = {{∇u}}+ iak |[u]|n .
(17)

If the edge belongs to the walls of the waveguide we
set:

û =u+
d1
ik

∇u · n,
ikσ̂ =0.

(18)

If the edge is on the boundary of the scatterer we set:

û =0,

ikσ̂ =∇u+ iakun.
(19)

And if it is on the artificial boundaries:

û =uinc +NtD
(
∇u · n−∇uinc · n

)
+

−ikd2NtD
∗(NtD

(
∇
(
u− uinc

)
· n

)
− u+ uinc

)
,

ikσ̂ =∇u+

−ikd2
(
NtD

(
∇
(
u− uinc

)
· n

)
− u+ uinc

)
,

(20)
where NtD∗ : L2(Σ) → L2(Σ) is the adjoint of the NtD
map and a, b, d1, and d2 are tunable parameters that can
control the stability of the scheme. For the particular case
of a = b = d1 = d2 = 1/2 we recover the UWVF except
for the artificial boundaries (see [2]).

4. VARIATIONAL FORMULATION

After substitution of the numerical fluxes in Eqn. (16) we
get that the discrete solution uh ∈ V (Th) must satisfy:

ah(uh, vh) = ℓh(vh) ∀vh ∈ Vh(Th), (21)

where ah : V (Th)×V (Th) → C is the sesquilinear form:

ah(w, v) =
∑
E∈EI

h

∫
E

(
{{w}}+ b

ik
|[∇w]|n

)
|[∇v]|n dγ

−
∑
E∈EI

h

∫
E

(aik |[w]|n + {{∇w}}) |[v]|n dγ

−
∑

E∈∂D

∫
E

(
∇u · n+ aiku

)
v dγ

+
∑
E∈Γ

∫
E

(
w +

d1
ik

∇hw · n
)

∇v · n dγ

+
∑
E∈Σ

∫
E

(
NtD(∇w · n)∇v · n−∇w · n v

)
dγ

−
∑
E∈Σ

∫
E

d2ik
(
NtD(∇w · n)− w

) (
(NtD(∇v · n)− v

)
dγ

(22)
and ℓh : V (Th) → C is the antilinear form:

ℓh(v) =
∑
E∈Σ

∫
E

(
NtD(∇uinc · n)− uinc

)
∇v · ndγ

−
∑
E∈Σ

∫
E

d2ik
(
NtD(∇uinc· n)−uinc

) (
NtD(∇v · n)−v

)
dγ .

(23)

5. PLANE WAVE CONVERGENCE

In this work we approximate V (K) as a finite combination
of plane waves, i.e. Vp(K) :=

〈
φK
j

〉Np

j=1
where the plane

waves:

φK
j (x) = eikdj ·x, j = 1, . . . , Np = 2p+ 1

have propagating directions {dj} linearly spaced in S1.
For this case we have proved the following estimates.

If u ∈ V (Th) ∩ Hs+1(Ω \ D) for some 1 ≤ s ≤ p−1
2 ,

then:

• For fixed number of plane waves, Np:

∥u− uh∥ ≤ Chs−1
∥∥uinc

∥∥ (24)
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Figure 4. Relative error ∥uh−u∥
∥u∥ when uinc is the first

propagating mode.

• And for a fixed mesh diameter, h:

∥u− uh∥ ≤ Ch

( log(p+ 2)

p

)s− 1
2 ∥∥uinc

∥∥ (25)

where ∥ · ∥ stands for the L2 norm in Ω \ D.
In particular, for u ∈ C∞ (

Ω \ D
)

the method has
faster than polynomial convergence in both p and h.

6. NUMERICAL TESTS

We show now numerical examples of the h and p con-
vergence curves. Due to the lack of exact solutions when
a scatterer is present, we only show two numerical tests:
one where uinc is a propagating mode with no scatterer,
and one where the a point source located at s ∈ D:

G(x, s) := −
∞∑

n=0

eiβn|x−sx|

2iβn
θn(sy) θn(y), x ∈ Ω \ D,

(26)
is used as Dirichlet data on the boundary of the scatterer.

In Fig. 4 we show the convergence results for a prop-
agating mode when using a = b = d1 = d2 = 1

2 .
At the combination of the highest number of plane

waves Np and the smallest element diameter h we can see
the onset of numerical instabilities due to the poor condi-
tioning of the matrix.

In Fig. 5 we show the p and h convergence when test-
ing the method with Dirichlet data on the scatterer cor-
responding to a point source located inside the scatterer.
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Figure 5. Relative error ∥uh−u∥
∥u∥ when using as

Dirichlet data a point source located inside the scat-
terer.

The convergence stalls earlier likely due to errors in the
approximation of the exact solution (see Eqn. (26)) as a
finite sum.
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