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ABSTRACT

Room Impulse Responses (RIRs) characterize acoustic environ-
ments and are crucial in multiple audio signal processing tasks.
High-quality RIR estimates drive applications such as virtual
microphones, sound source localization, augmented reality, and
data augmentation. However, obtaining RIR measurements with
high spatial resolution is resource-intensive, making it imprac-
tical for large spaces or when dense sampling is required. This
research addresses the challenge of estimating RIRs at unmea-
sured locations within a room using Denoising Diffusion Prob-
abilistic Models (DDPM). Our method leverages the analogy
between RIR matrices and image inpainting, transforming RIR
data into a format suitable for diffusion-based reconstruction.
Using simulated RIR data based on the image method, we
demonstrate our approach’s effectiveness on microphone arrays
of different curvatures, from linear to semi-circular. Our method
successfully reconstructs missing RIRs, even in large gaps be-
tween microphones. Under these conditions, it achieves accu-
rate reconstruction, significantly outperforming baseline Spline
Cubic Interpolation (SCI) in terms of Normalized Mean Square
Error (NMSE) and Cosine Distance (CD) between actual and in-
terpolated RIRs.
This research highlights the potential of using generative models
for effective RIR interpolation, paving the way for generating
additional data from limited real-world measurements.
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1. INTRODUCTION

Room Impulse Responses (RIRs) play a critical role in audio
signal processing, enabling applications such as sound source lo-
calization, virtual and augmented reality, and data augmentation
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for machine learning. However, measuring RIRs is resource-
intensive, particularly in large or acoustically complex spaces
requiring dense measurements. Simulated RIRs, while practical,
often lack the accuracy and fidelity of real-world data, necessi-
tating methods to reconstruct or interpolate RIRs at unmeasured
locations.

Traditional methods for RIR reconstruction rely on mathe-
matical models, such as compressed sensing and wave equation
solutions [1–5], but these approaches often struggle with com-
plex acoustic environments. Recent advancements leverage deep
learning techniques, including Convolutional Neural Networks
(CNNs) [6] and Generative Adversarial Networks (GANs), to
improve reconstruction accuracy. For instance, GANs have
shown promise in extending the bandwidth of array process-
ing [7], while Physics-informed Neural Networks (PINNs) in-
corporate acoustic principles to refine predictions [8]. DDPM
has recently emerged as a powerful tool for sound field recon-
struction, offering a probabilistic framework for generating ac-
curate acoustic fields [9]. However, most of these approaches
focus on specific frequency bands or parts of the RIR. A recent
challenge focuses on generative models for synthesizing room
acoustics as a data augmentation tool for speaker distance esti-
mation tasks [10].

Our work explores the analogy between RIR reconstruction
and image inpainting. By treating RIR matrices as images, we
apply a diffusion model to reconstruct the full time span of RIRs.
This novel approach enables robust and accurate RIR interpola-
tion, achieving excellent performance in terms of NMSE and
CD, even in scenarios where the microphones are sparsely dis-
tributed in the acoustic environment. The proposed method, sup-
ported by an experimental study using simulated acoustic envi-
ronments, provides a strong foundation for potential real-world
applications.

2. PROBLEM FORMULATION

This research aims to reconstruct RIRs for unmeasured locations
using a limited number of measured RIRs. Given M measured
RIRs in a room, the task is to estimate RIRs at L unmeasured
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locations, resulting in a total of N = M + L locations. Each
RIR is sampled at a frequency Fs and truncated to K samples,
beyond which it falls into the noise floor.

This paper focuses on linear and semi-circular array config-
urations, as well as intermediate arc-shaped configurations, al-
though the methodology can be extended to other setups. In this
framework, we consider N microphone positions, of which only
M randomly selected RIRs are measured, while the remaining
L measurements are missing, as illustrated in Fig. 1 for a linear
array.

Figure 1. Geometric setup of a room with a source and
a microphone array. Measured and missing microphones
are marked in green and red dots, respectively. We aim to
reconstruct the RIRs of the missing microphones.

Mathematically, let H be the matrix representing the RIRs,
where H ∈ RN×K . We denote the available RIR measurements
as Hmeasured ∈ RM×K . Our objective is to estimate the missing
entries in H to obtain a complete matrix Ĥ ∈ RN×K . Each col-
umn of H, denoted hi, represents the RIR at the i-th location,
where 1 ≤ i ≤ N . Treating this matrix as an image, the prob-
lem is analogous to image inpainting, where the goal is to recon-
struct the missing parts using the available data. Figure 2 shows
a heatmap of the matrix H, along with a zoomed-in view of one
microphone’s RIR. Our aim is to reconstruct the missing RIRs
scattered throughout the array using the measured RIRs. Re-
constructing missing RIRs requires leveraging the data’s spatial
and temporal structures. By addressing this challenge, we aim
to develop a robust interpolation method that facilitates acoustic
analysis and processing across various applications.

3. PROPOSED APPROACH

We formulate the problem of reconstructing missing RIRs as an
image inpainting task. By representing the RIR data as an image,

Figure 2. Heatmap of RIR matrix H, with one zoomed-
in RIR view. Each column in the matrix represents one
microphone.

we can leverage the power of DDPMs to estimate the missing
responses. Our work is inspired by previous research on image
inpainting using diffusion models, notably [11], which demon-
strated effective reconstruction of missing image regions using
a pretrained diffusion model which was trained on the task of
generating new images.

3.1 Inpainting with Diffusion Models

Lugmayr et al. [11] introduced RePaint, an inpainting method
based on DDPMs. This approach utilizes a pre-trained model
originally trained for general image generation. During infer-
ence, the model is adapted to the inpainting task by conditioning
it on the known parts of an image while generating new con-
tent for the missing regions. At each diffusion step, the model
is guided to remain consistent with the observed parts, ensuring
that only the missing regions are reconstructed while the known
areas are preserved. This method allows for flexible inpainting
without requiring prior knowledge of the mask pattern.

This iterative refinement aligns well with our problem,
where missing RIR data should be reconstructed to closely re-
semble the original responses without prior knowledge of the
missing microphone positions.

We adopt OpenAI’s DDPM architecture 1 with necessary
modifications to accommodate RIR-matrix images. While the
original model is designed for natural images, RIR data exhibits
distinct statistical properties. Training the model on a dedicated
small RIR dataset allows it to capture these characteristics, lead-
ing to more accurate reconstructions.

During inference, a masked RIR image is fed into the trained
diffusion model, which iteratively reconstructs the missing re-
gions. The output is a complete RIR image. Finally, the recon-

1 https://github.com/openai/guided-diffusion
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structed image is converted to its original matrix form by trans-
forming grayscale pixel values into response amplitudes. Only
the newly inpainted regions are retained, representing the recon-
structed RIR.

3.2 Image Representation of the RIR Set

To apply inpainting techniques, we recast the RIR data into an
image-like format. Given an array configuration, we arrange the
RIRs into a 2D matrix where each column corresponds to an
RIR of length K from a specific microphone position. Different
numbers of missing microphones and RIR lengths can also be
accommodated. This will result in images of varying width and
height dimensions. The resulting matrix is treated as a grayscale
image, with intensity values representing normalized RIR ampli-
tudes. This format enables structured processing while retaining
spatial and temporal information.

Since DDPMs are typically trained on fixed-size images, we
split the RIR matrix into patches of 64×64 pixels, corresponding
to 64 possible microphone positions and 64 RIR taps. If the
length of the RIR exceeds 64, as is often the case, we divide
the image into multiple patches, each representing a different
portion of the RIR.

To address the issue of lower reconstruction quality at the
edges of the patches due to the lack of surrounding context, we
introduce an overlap of 25% between adjacent patches. We also
normalize each patch to the range -1 to 1, allowing the network
to reconstruct each patch independently of the energy level of
that part of the response. After reconstruction, these patches are
reassembled into a complete image by rescaling each patch to
its original energy, discarding the overlapping regions, and re-
taining only the central portions of the patches. This approach
balances computational efficiency and reconstruction accuracy
and ensures a seamless reconstruction by eliminating duplicates
and maintaining continuity.

In cases where the microphone configuration has fewer than
64 microphones, we pad the image with duplicated columns to
ensure an image width of 64 pixels. This preserves the model’s
expected input dimensions while minimizing distortions in the
reconstruction process.

To simulate missing measurements, we generate masks of
varying percentages by zeroing out randomly selected columns
in the RIR image. These masks represent the unmeasured micro-
phone locations. The masked image, along with its correspond-
ing mask, are then fed as input to the diffusion model.

4. EXPERIMENTS

In this section, we describe our experiments using artificial RIRs
generated by the Pyroomacoustics package. 2

2 https://pyroomacoustics.readthedocs.io/en/
pypi-release/

4.1 Experiment Setup

The simulated database of RIRs comprises multiple microphone
array configurations: a uniform linear array (ULA), a semi-
circular array, and intermediate arcs. The ULA configuration
uses 64 microphones and spans a length of 3 meters, resulting
in a 4 cm distance between adjacent microphones. The semi-
circular array configuration uses 64 microphones with a 1.5-
meter radius, resulting in a 7.3 cm distance between adjacent mi-
crophones. The simulated room dimensions are 6× 5.5× 2.8m
(length, width, and height, respectively). The simulation uses a
sampling frequency of Fs = 8 kHz.

The data is split into training and inference sets. The training
set consists of 176 randomly selected patches from 8 RIR im-
ages, corresponding to various microphone array configurations.
The source positions were randomly selected from 9 positions on
a semi-circle with a radius of 2 meters from the array’s center,
as depicted in Fig. 14. During training, the reverberation time
(T60) was fixed at 0.3 seconds across all frequency bands. Each
RIR was truncated to 1024 samples, corresponding to a duration
of 0.128 seconds.

As previously mentioned, during training, the model learns
to generate new images from the distribution of the training
dataset. During inference, the model generates new images
while conditioning on the known parts of the image, which cor-
respond to the measured responses.

To introduce variability in absorption coefficients across fre-
quency bands, we selected “smooth brickwork 10 mm pointing,”
from the Pyroomacoustics material database as the wall material
for the inference dataset. Using this material and the specified
room dimensions corresponds to a full-band reverberation time
(T60) of 0.6 seconds. The evaluation was carried out using a
ULA, a semi-circular array, and intermediate arc configurations.
All nine different source positions were tested. Each RIR was
truncated to 2048 samples, corresponding to a duration of 0.256
seconds. In each trial, we randomly removed a percentage of the
microphone measurements, varying the ratio of missing micro-
phones from 10% to 90%.

4.2 Performance Measures and a Baseline Method

The results of our experiments are analyzed using two quality
measures, comparing the estimated and the ground truth RIR for
the M missing microphones. The first is the Normalized Mean
Square Error (NMSE) in dB, defined as (see [5]):

NMSE(H, Ĥ) = 10 log10

(
1

M

M∑
i=1

∥ĥi − hi∥2

∥hi∥2

)
, (1)

where ĥi ∈ RN×1 is the estimate of the ith RIR corresponding
to the ith column of Ĥ. The second is the Cosine Distance (CD),
defined as (see also [12]):

CD(H, Ĥ) =
1

M

M∑
i=1

(
1−

(
h⊤
i ĥi

∥hi∥∥ĥi∥

)2)
. (2)
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The value CD(H, Ĥ) = 1 is obtained if all estimates are or-
thogonal to the corresponding true RIR for all M missing values
(i.e., all estimates are the worst possible), and CD(H, Ĥ) = 0
if all estimated and true RIRs are perfectly aligned. The CD is
particularly useful in audio applications [12].

Finally, we used the Spline Cubic Interpolation (SCI) tech-
nique as a baseline method [13].

4.3 Results

In this section, we present and analyze the performance of the
proposed method and compare it with the baseline method.

Figures 3 and 4 depict the NMSE and CD, respectively, for
different mask ratios for linear array configuration as shown in
Fig. 1. Our method improves the NMSE by 3 to 7 dB and the

Figure 3. NMSE for inpainted and baseline SCI vs. mask
ratio.

CD measure over the baseline by approximately 0.3, depending
on the mask ratio.

We now focus on the reconstruction results for a 70% mask
ratio. Figure 5 provides a detailed view of the microphone in-
dices, describing which microphone signals are measured (blue)
and which are missing (red). In Figs. 6 and 7, we present the
reconstructed and ground truth RIRs for microphones #16 and
#48, respectively. Microphone #16 is located very close to the
measured microphones, while microphone #48 is situated in a re-
gion with sparse measurements, leading to better reconstruction
for the former. Yet, even in the more challenging case of mi-
crophone #48, the reconstructed RIR successfully captures the
main features, including both the direct and early arrivals. The
CD for microphone #48 is relatively low at 0.37 (but higher than
CD = 0.12 for microphone #16), demonstrating the model’s
ability to accurately infer and reconstruct acoustic reflections
even in areas with limited measured data. In Fig. 8, we fur-
ther analyze the acoustic properties of RIR #48 by examining

Figure 4. CD for inpainted and baseline SCI vs. mask
ratio.

Figure 5. Linear array configuration: Measured (blue)
and missing (red) microphones.

Figure 6. Reconstructed and ground truth impulse re-
sponse for microphone No. #16.

its Energy Decay Curve (EDC). It is evident that the EDC
of the reconstructed RIR closely resembles that of the ground
truth. Moreover, the estimated full-band reverberation time de-
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Figure 7. Reconstructed and ground truth impulse re-
sponse for microphone No. #48.

rived from the EDC slope, T60 = 0.64 seconds, closely matches
the ground truth value of T60 = 0.6 seconds. Despite the large

Figure 8. EDC of reconstructed and ground truth impulse
response for microphone No. #48, and the corresponding
T60.

percentage of missing microphones, our method demonstrates
favorable performance for the ULA configuration, generating a
reconstructed RIRs that closely align with the ground truth re-
sponses.

Next, we evaluate the performance of the proposed method
for the semi-circular microphone array. First, Fig. 9 illustrates
the room and several array curvatures. We begin by examining
the semi-circular array labeled as array #10 in the figure.

The reconstruction results for the semi-circular array, as

Figure 9. Room with several array curvatures from a lin-
ear to a semi-circular configuration.

measured by the CD metric, are presented in Fig. 10. Our
method significantly outperforms the baseline interpolation ap-
proach, with improvements of 0.2–0.6 in the CD measure, up to
a mask ratio of 70%.

Figure 10. CD for semi-circular array vs. mask ratio.

Despite these improvements, the inpainting algorithm’s per-
formance for the semi-circular array is inferior compared to the
linear array. This difference can be attributed to the geometric
challenges posed by the curved reflection patterns in the semi-
circular array, which are more complex to reconstruct than the
straight-line patterns found in the linear array.

The influence of array curvature on performance is further
explored in Figs. 11 and 12, which present the NMSE and CD
measures, respectively. As the array curvature increases, per-
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formance degradation becomes evident, suggesting that the in-
painting task is more manageable when the reflection patterns
are straight rather than curved.

Figure 11. NMSE for different array curvatures.

Figure 12. CD for different array curvatures.

The RIR images in grayscale for the linear array, the semi-
circular array, and two intermediate configurations are presented
in Fig. 13. These images highlight differences in reflection pat-
terns: the linear array exhibits straight-line reflections that are
easier to reconstruct, whereas the semi-circular array produces
curved reflections, which pose greater challenges during inpaint-
ing. These findings emphasize that while the model adapts well
to semi-circular arrays, it achieves superior performance when
the reflection paths are straight.

Finally, in Fig. 14, we show the room setup with 9 loud-
speaker angles. Figure 15 demonstrates that the best results are

Figure 13. RIR images in grayscale for the linear array,
circular array, and intermediate configurations.

obtained for sources located at 90° (‘broadside’) relative to the
array, while higher errors are observed for sources positioned at
10° or 170° (towards ‘endfire’).

Figure 14. Geometric setup of the room with different
source angles.

To further illustrate this, Fig. 16 presents several grayscale
images of RIRs, ranging from broadside to endfire configura-
tions. When the source is positioned in front of the array, i.e.,
in the broadside configuration, the image exhibits greater sym-
metry, making it easier to inpaint and reconstruct the missing
points. However, when the source is located at endfire angles, it
becomes more challenging to complete the impulse response for
the microphones on the opposite side, which are farther away.
Additionally, the lines in the endfire configuration are sharper,
while those from the broadside configuration are smoother.

5. DISCUSSION

We addressed the challenge of acquiring RIR measurements,
which are essential for characterizing a room’s acoustic prop-
erties but are resource-intensive to collect. We propose lever-
aging super-resolution techniques, traditionally used in imaging,
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Figure 15. CD for inpainted and baseline SCI for different
source location.

Figure 16. Comparison of RIR images for different an-
gles: from 90° - broadside (on the left) to 10° - endfire (on
the right).

to interpolate or predict RIRs at unmeasured locations within a
room. This method utilizes existing RIR data to generate high-
resolution acoustic mappings without the need for exhaustive
measurements, enabling applications in sound source localiza-
tion, separation, and augmented reality.

Our simulation results show that the proposed method gen-
eralizes effectively beyond the trained configurations, allowing
the generation of RIRs for different microphone arrays and even
for rooms that were not part of the training set. Although tested
with simulated RIRs, we believe that this research opens the door
to generating additional data from limited real-world measure-
ments.

6. REFERENCES

[1] O. Thiergart, G. Del Galdo, M. Taseska, and E. A. Habets,
“Geometry-based spatial sound acquisition using distributed
microphone arrays,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 21, no. 12, pp. 2583–2594,
2013.

[2] M. Pezzoli, F. Borra, F. Antonacci, S. Tubaro, and A. Sarti,
“A parametric approach to virtual miking for sources of
arbitrary directivity,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 28, pp. 2333–2348,
2020.

[3] M. Pezzoli, M. Cobos, F. Antonacci, and A. Sarti, “Sparsity-
based sound field separation in the spherical harmonics
domain,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1051–1055,
2022.

[4] A. Fahim, P. N. Samarasinghe, and T. D. Abhayapala,
“Sound field separation in a mixed acoustic environment us-
ing a sparse array of higher order spherical microphones,”
in Hands-free Speech Communications and Microphone Ar-
rays (HSCMA), pp. 151–155, 2017.

[5] E. Zea, “Compressed sensing of impulse responses in rooms
of unknown properties and contents,” Journal of Sound and
Vibration, vol. 459, p. 114871, 2019.

[6] M. Pezzoli, D. Perini, A. Bernardini, F. Borra, F. Antonacci,
and A. Sarti, “Deep prior approach for room impulse re-
sponse reconstruction,” Sensors, vol. 22, no. 7, p. 2710,
2022.

[7] E. Fernandez-Grande, X. Karakonstantis, D. Caviedes-
Nozal, and P. Gerstoft, “Generative models for sound field
reconstruction,” The Journal of the Acoustical Society of
America (JASA), vol. 153, no. 2, pp. 1179–1190, 2023.

[8] M. Olivieri, M. Pezzoli, F. Antonacci, and A. Sarti, “A
physics-informed neural network approach for nearfield
acoustic holography,” Sensors, vol. 21, no. 23, p. 7834, 2021.

[9] F. Miotello, L. Comanducci, M. Pezzoli, A. Bernardini,
F. Antonacci, and A. Sarti, “Reconstruction of sound field
through diffusion models,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pp. 1476–1480, 2024.

[10] J. Lin, G. Götz, H. S. Llopis, H. Hafsteinsson, S. Guðjóns-
son, D. G. Nielsen, F. Pind, P. Smaragdis, D. Manocha,
J. Hershey, T. Kristjansson, and M. Kim, “Genera-
tive data augmentation challenge: Synthesis of room
acoustics for speaker distance estimation,” arXiv preprint
arXiv:2501.13250, 2025.

[11] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte,
and L. Van Gool, “Repaint: Inpainting using denoising diffu-
sion probabilistic models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11461–11471, 2022.

[12] D. R. Morgan, J. Benesty, and M. M. Sondhi, “On the evalu-
ation of estimated impulse responses,” IEEE Signal Process-
ing Letters, vol. 5, no. 7, pp. 174–176, 1998.

4085



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

[13] C. De Boor, A practical guide to splines, vol. 27. springer
New York, 1978.

4086


