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ABSTRACT

Parkinson’s disease (PD) is a neurodegenerative disorder
that often manifests vocal symptoms, making voice and
speech analysis a valuable tool for noninvasive monitor-
ing and diagnosis. This paper investigates the use of a
deep learning model, comprising a SincNet front-end cou-
pled with an EfficientNetV2-L backbone, to discriminate
between pathological voices of individuals with PD and
normophonic voices in Spanish-speaking individuals in
the Neurovoz database. Using an 11-fold stratified group
cross-validation methodology, our model achieved a mean
accuracy of 76. 08% to discriminate between PD patients
and healthy controls (HC). The results demonstrate the ca-
pabilities of the Sinc network for the characterization of
voice pathologies using custom filterbanks.
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1. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurological dis-
order characterized by motor and nonmotor symptoms, in-
cluding characteristic speech impairments known as hy-
pokinetic dysarthria (e.g., reduced volume, monotonic
pitch, imprecise articulation) [1]. The analysis of sus-
tained vowels provides a reliable and non-invasive means
to objectively assess these vocal changes and monitor the
progression of PD [2].
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Detecting pathological voices has traditionally in-
volved extracting hand-crafted acoustic features, such as
jitter, shimmer, harmonic-to-noise ratio (HNR), or the
widespread Mel-frequency cepstral coefficients (MFCC)
[3, 4]. While MFCC efficiently captures spectral data
through fixed filterbanks grounded in human auditory
models, this fixed structure might limit its ability to de-
tect subtle or atypical acoustic patterns associated with
particular pathologies. In contrast, learnable frontend ar-
chitectures allow filterbank characteristics to be optimized
directly from data during model training. This data-driven
adaptability enables filters to specialize for the specific
acoustic discrimination task, potentially enhancing the de-
tection of pathological voice characteristics, such as those
present in PD.

SincNet is a prominent example of learnable filter-
banks. This architecture, described in [5], is designed
to process raw audio. By using parameterized sinc func-
tions in its initial convolutional layer, SincNet is designed
to optimize and learn task-specific bandpass filters. This
improves interpretability and has demonstrated promis-
ing results in multiple speech-related tasks. For example,
its application in pathology detection, as reported in [6],
showed an increase in accuracy of approximately 7% to
classify various voice disorders (such as neoplasm, func-
tional dysphonia, vocal palsy and phonotrauma) compared
to controls, using sustained phonation recordings coming
from the Far Eastern Memorial Hospital dataset.

With these antecedents in mind, this paper evaluates
the effectiveness of SincNet to discriminate between pa-
tients affected by PD and healthy controls (HC), using sus-
tained vowel /a/ recordings from the NeuroVoz database
[7]. The proposed architecture includes features extracted
by a learnable SincNet front-end and by a Convolutional
Neural Network (CNN) backbone, which are then for clas-
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sification PD vs HC by a subsequent multilayer perceptron
(MLP) head.

2. MATERIALS AND METHODS

2.1 Dataset: NeuroVoz

The NeuroVoz dataset is used in this paper. It con-
tains voice and speech signals from 108 native Spanish-
Castilian speakers (55 HC and 53 individuals with PD).
PD participants were recorded while in their ”ON” med-
icated state, having taken their standard medication be-
tween 2 to 4 hours before the recording sessions. The
complete data set includes recordings of different speech
tasks, such as sustained vowel phonations, diadochoki-
netic tests, 16 listen-and-repeat phrases, and a monologue.
However, this paper focuses exclusively on the multiple
sustained phonations of the vowel /a/ contained in the
dataset. As a result, 111 recordings from HC speakers
(45.5%) and 133 recordings from PD participants (54.5%)
are employed.

2.2 Methodology

2.2.1 Preprocessing

All audio recordings were first resampled at a sample rate
of 16 kHz. Then, each recording was normalized in am-
plitude to the range [-1, 1]. To handle variable recording
lengths and ensure consistent input dimensionality, nor-
malized audio signals were segmented into fixed length
chunks. Non-overlapping segments of 5 seconds duration
were extracted from each recording using a stride equal to
the segment length. A subject-independent 11-fold strat-
ified group cross-validation strategy was used for model
evaluation. In this way, the signal chunks were partitioned
so that all segments belonging to a single subject were
contained entirely within a single fold, preventing data
leakage between the training and validation sets within
each fold iteration.

2.2.2 Model Architecture

An end-to-end deep learning model was developed, pro-
cessing raw audio waveforms directly. The architecture
comprises three main components: a learnable frontend,
a pre-trained backbone, and a classifier head. A summary
graphic of this architecture is presented in Figure 1.

• SincNet Frontend: The initial layer employed
SincNet, a convolutional layer with 128 filters, a
kernel size of 251 samples, and a stride of 160

samples. The minimum low-frequency cut-off and
the minimum filter bandwidth were set to 10 Hz.
The SincNet layers implementations in Speech-
brain were used in this paper [8].

• Backbone Network: The spectral representation
resulting from the convolution of the input wave-
forms and filterbanks trained by the SincNet layer
was processed by a CNN convolutional back-
bone based on an EfficientNetV2-L [9] architecture
through the timm library [10]. The backbone was
used in the feature extraction mode, where the final
classification layer of the original EfficientNetV2-
L was removed. Global average pooling was ap-
plied to the backbone output to generate a fixed-
size feature vector for each input segment.

• Classifier Head: A Multi-Layer Perceptron
(MLP) served as the classification head. It con-
sisted of one hidden layer with 256 units and a
ReLU activation function, followed by a dropout
layer with a rate of 0.3 for regularization. The fi-
nal output layer produced logits for the two target
classes (HC and PD).

The model was trained using the Cross-Entropy loss
function. An AdamW optimizer [11] was used with a
weight decay of 0.001. A component-specific learning
rate strategy was adopted: the SincNet frontend used an
initial learning rate of 0.01, the EfficientNetV2-L back-
bone used 0.0005 (to enable fine-tuning), and the classi-
fier head used 0.001. These learning rates were dynam-
ically adjusted during training using a Cosine Anneal-
ing schedule with warm restarts, annealing to a minimum
learning rate of 1e− 6 for all components. Gradient clip-
ping with a maximum norm of 1.0 was applied to stabilize
the training. The models were trained for a maximum of
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Figure 1. Deep learning strategy followed in this pa-
per. Three layers are used for classifying between
PD and HC spakers: a SincNet frontend layer, a
backbone using a Efficientnet pretrained model and
a MLP classifier.
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150 epochs using a batch size of 16. Early stopping was
implemented with a patience of 20 epochs based on the
validation accuracy: training stopped if no improvement
in validation accuracy was observed for 20 consecutive
epochs. The model achieving the highest validation ac-
curacy during the training within each fold was saved as
the best model for that fold. All experiments were imple-
mented using PyTorch and tracked using WandB [12]. Re-
producibility was ensured by setting a fixed random seed
(420) for all relevant libraries (Python random, numpy,
Pytorch, Speechbrain).

3. RESULTS

The proposed audio classification model, which combines
a SincNet front-end with an EfficientNetV2-L backbone,
was evaluated on the Neurovoz dataset for discriminating
between PD vs HC. The crossvalidated results with the
average over the 11-folds are included in Table 1. Like-
wise, the consolidated confusion matrix of the 11-folds
cross-validation is presented in Figure 2.

Table 1. Crossvalidated Performance Metrics (Mean
± SD over 11 Folds)

Metric Value (Mean ± SD).

Accuracy (%) 76.08 ± 8.88
ROC AUC 0.66 ± 0.19
F1 Score 0.72 ± 0.19
Sensitivity 0.73 ± 0.26
Specificity 0.62 ± 0.34

4. DISCUSSION

This study investigated the efficacy of a deep learning
model, comprising a SincNet frontend coupled with a
pre-trained EfficientNetV2-L backbone, for the detection
of Parkinson’s Disease (PD) using sustained phonations
of the vowel /a/ recordings from the NeuroVoz database
[7]. By using an 11-fold stratified group cross-validation
methodology, our model achieved a mean accuracy of
76.08% to discriminate between PD patients and Healthy
Controls (HC). The performance level seem promising
compared to the baseline results shown in the original
NeuroVoz dataset paper [7]. In this paper, traditional
machine learning methods, using the AVCA-ByO feature
set [4], and employing Random Forest and Logistic Re-
gression classifiers, reported balanced accuracies of 64%

Figure 2. Crossvalidated confusion matrix aggregat-
ing individual results by each one of the folds.

and 65%. Likewise, a deep learning baseline using Mel-
spectrogram inputs with a fine-tuned ResNet-18 reached
a balanced accuracy of 69%. While our main metric
was overall accuracy instead of balanced accuracy, and
our cross-validation strategies vary slightly, our model’s
performance indicates an improvement on these baselines
for the specific task of sustained vowels in the NeuroVoz
dataset. The potential advantage of our approach, particu-
larly compared to the ResNet-18 baseline, may come from
the SincNet frontend. As discussed in [5], SincNet’s abil-
ity to learn filterbank parameters directly from the raw au-
dio waveform allows for the optimization of filters spe-
cific to the task at hand. This contrasts with the fixed,
psychoacoustically motivated Mel filterbanks used for the
creation of Mel-spectrograms. It is plausible that these
learnable filters capture subtle acoustic markers indicative
of Parkinsonian voice quality more effectively than stan-
dard feature representations.

Although the results are promising, several limita-
tions must be addressed. Our analysis focused only on
the sustained vowel /a/ task in NeuroVoz and did not in-
clude other speech tasks like sentence reading or mono-
logue, which might yield different performance results in
continuous speech contexts. Furthermore, the NeuroVoz
dataset is limited in size and restricted to Castilian Span-
ish, potentially impacting the generalization of the find-
ings. Furthermore, our chosen architecture is effective but
not exhaustive; we did not investigate alternative learnable
frontends such as Leaf [13] or other convolutional back-
bone architectures.
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These limitations define different directions for future
research. For instance, the current methodology could be
evaluated on continuous speech from NeuroVoz to assess
its robustness and performance in more complex acous-
tic contexts. Addressing generalizability requires validat-
ing the approach on larger, more diverse, and multilingual
datasets. Furthermore, systematic exploration of alterna-
tive deep learning architectures, including different com-
binations of frontends and backbones, could lead to per-
formance enhancements. Investigating the acoustic char-
acteristics captured by the learned SincNet filters may also
provide valuable information on the specific markers iden-
tified for the detection of PD. Finally, exploring the fusion
of acoustic features with other relevant modalities could
offer further diagnostic improvements.

In conclusion, while the presented methodology
demonstrates potential, further investigation is necessary
to address the limitations mentioned above, to refine its
performance, confirm its robustness, and establish its suit-
ability in voice pathology detection.
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