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ABSTRACT

Measuring room impulse responses (RIRs) over space is
central to many applications, including sound field con-
trol, room compensation, and loudspeaker system cal-
ibration. Typically, RIRs are measured with a single
microphone or a microphone array positioned at static,
known locations. To extend the measurement area, the
microphones must be sequentially re-positioned to mea-
sure RIRs at new locations, a process that can be time-
consuming and experimentally cumbersome. In this work,
we investigate dynamic measurements using a robotic
arm. In a dynamic measurement, a microphone is con-
tinuously moved along a known trajectory as it captures a
continuous excitation signal. Dynamic measurements can
therefore cover large areas of space while being poten-
tially easier to deploy. We describe a processing method
based on an elementary wave expansion to estimate the
RIRs over space from dynamic measurements. The use
of a robotic arm allows for accurately tracking the micro-
phone trajectory and provides a way to obtain ground truth
measurements to evaluate the estimations. Results from
experimental data show successful RIR estimations, par-
ticularly in the low-frequency range (20-500 Hz).
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1. INTRODUCTION

Characterizing the sound field inside rooms is essential in
many acoustics and audio engineering applications, such
as sound field control [1], room response equalization [2],
loudspeaker system calibration [3], 6DoF immersive au-
dio [4], and sound field analysis [5]. The sound field is
normally characterized by measuring room impulse re-
sponses (RIRs) between a loudspeaker and a set of micro-
phones. Typically, the measurements are performed se-
quentially by acquiring a set of RIRs at a time and then
re-positioning the microphones for the next measurement
[6]. However, sequential measurement require consider-
able experimental effort, specially when sampling large
areas. Ultimately, positioning many microphones in a
sequential manner becomes time consuming, impractical
and costly.

Dynamic measurements offer an attractive alternative
to sequential static measurments. In a dynamic mea-
surement, a microphone (or a compact array) is contin-
uously moved within the measurement area as it records
the sound pressure. The recorded signals are then pro-
cessed to estimate the sound field over the region of inter-
est. Compared to stationary measurement, dynamic mea-
surements can potentially reduce the acquisition time and
experimental effort required to characterize a sound field.

Several dynamic measurements methods have been
developed, including techniques for uniform [7] and non-
uniform [8, 9] microphone trajectories, methods to mea-
sure binaural RIRs [10], head related transfer functions
[11], and RIRs from multiple sources simultaneously [12],
models that account for the Doppler shift introduced by
the microphone movement [13] as well as models based
on spherical harmonic expansions [14], compressed sens-

DOI: 10.61782/fa.2025.0316

4267



11th Convention of the European Acoustics Association
Málaga, Spain • 23rd – 26th June 2025 •

ing [15], and Bayesian inference [16]. While there is
a rich literature, dynamic measurements methods have
mostly been tested in simulation studies, with the excep-
tion of measurements along circular trajectories [7,10,17].
Therefore, there is a lack of experimental validation with
real data in the existing literature.

In this study, dynamic measurements with a robotic
arm are conducted. The use of a robotic arm makes it
possible to define arbitrary trajectories and accurately re-
trieve the microphone position during the measurement.
The robotic arm is also used to perform conventional static
RIR measurements, providing a ground truth to evaluate
the estimations. A plane wave expansion is used for mod-
eling the sound field. Plane wave expansions are a robust
and effective model for representing sound fields in enclo-
sures, particularly in at low and mid frequencies [6]. This
work presents one of the first experimental studies of dy-
namic RIR measurements along arbitrary trajectories with
real data.

2. THEORY

The dynamic sampling of RIRs is briefly described in
this section since more detailed derivations can be found
elsewhere [14]. To dynamically measure RIRs, a static
loudspeaker is driven with an excitation signal (such as
pseudo-random noise) and the resulting sound pressure is
recorded with a microphone moving across the room. The
excitation signal, s(n), is defined at times tn = n/fs
for n = 0, . . . , N − 1, where fs is the sampling fre-
quency. The position of the microphone at tn is denoted
rn. It is assumed that the microphone trajectory, i.e.,
r0, . . . , rN−1, is known. The acoustic response of the
room at position r is described by the RIR, h(r, n), for
n = 0, . . . , L− 1. Here it is assumed that the RIR is neg-
ligibly small for n > L − 1. The signal measured by the
microphone, y(rn, n), is given by the convolution of the
excitation signal with the RIR [14],

y(rn, n) =

L−1∑
m=0

s(n−m)h(rn,m) + e(n), (1)

where e(n) is measurement noise. The RIR can be written
as the inverse Fourier transform of the frequency response
of the room, H ,

h(r, n) =
1

L

L−1∑
l=0

H(r, l)ej2π l
Ln. (2)

Combining equations (1) and (2) results in

y(rn, n) =

L−1∑
m=0

s(n−m)
1

L

L−1∑
l=0

H(rn, l)ej2π l
Lm + e(n)

=

L−1∑
l=0

[
1

L

L−1∑
m=0

s(n−m)ej2π l
Lm

]
H(rn, l) + e(n)

=

L−1∑
l=0

Sn,lH(rn, l) + e(n),

(3)
where the term in brackets in the second line of equation
(3) is the transpose of the matrix resulting from taking
the centered short-time Fourier transform of the excitation
signal with a window length of L and overlap of L − 1,
denoted Sn,l.

The acoustic response of the room is modeled as the
superposition of propagating plane waves [6]

H(r, l) ≈
Q−1∑
q=0

xq,lejkluq·r, (4)

where Q is the number of waves considered in the expan-
sion, uq is a unitary vector pointing in the direction of the
qth wave, kl is the wavenumber at the sampled frequen-
cies, i.e., kl = 2πlfs/(Lc), and c is the speed of sound.
The unknown coefficient xq,l is the amplitude of the wave
with direction uq and wavenumber kl. Combining equa-
tions (3) and (4), the measured pressure can be expressed
as

y(rn, n) =

L−1∑
l=0

Sn,l

Q−1∑
q=0

xq,lejkluq·rn + e(n). (5)

or, algebraically,
y = Ax+ e (6)

where y ∈ RN is the recorded pressure expressed as a
vector. The matrix A ∈ CN×QL is defined as A ≡
[S0 ⊙ A0, . . . ,SL−1 ⊙ AL−1], where Sl ∈ CN×N is a
diagonal matrix with entries S0,l, . . . , SN−1,l in its diag-
onal, and Al ∈ CN×Q is the matrix of plane waves with
elements al(n,q) = ejkluq·rn . Therefore, the entire tra-
jectory of the moving microphone, i.e., r0, . . . , rN−1, is
contained in the matrix A through the plane wave matrix
elements, ejkluq·rn . The vector x ∈ CQL is defined as
x ≡ [xT

0 , . . . ,x
T
L−1]

T , where xl ∈ CQ is the vector of
wave coefficients [x0,l, . . . , xQ−1,l]

T . The vector e ∈ RN

contains the measurement noise.
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Equation (6) represents a linear system with N equa-
tions (one for each time sample) and QL unknowns (one
for each plane wave in the expansion). Once the system
is solved, the ‘static’ frequency and impulse responses at
any position r in the measurement area can be computed
from the estimated wave coefficients using equations (4)
and (2), respectively. In addition, since the plane waves
used to represent the sound field are global functions, the
pressure can also be extrapolated outside the measurement
area to some extent.

2.1 Solving the linear system

Solving the system in equation (6) can be challenging.
Typically, the characterization of sound fields from static
measurements is done independently for each frequency
bin. Therefore the matrices involved are of small to
medium size (at most M × Q where M is the num-
ber of static positions), making it possible to apply ma-
trix decomposition-based methods to solve the system of
equations. In the dynamic case, however, since all the
samples along the trajectory are used to estimate the wave
coefficients, the problem cannot be split as easily, and the
matrix involved is typically very large. For example, for
a one minute recording at fs = 2048 samples/second, 0.5
seconds impulse response and 50 waves in the expansion,
the size of the matrix A is 122880×51150 which is clearly
not amenable to decomposition or even to store it in mem-
ory. An iterative solver, LSQR [18], is used in this study
for approximating the solution to the least squares prob-
lem

x̃ = arg min
x∈CQL

∥Ax− y∥. (7)

The LSQR solver is based on the conjugate gradient
method, and being iterative approximates the solution in
a finite number of steps. Inside the LSQR algorithm the
matrix A only appears in matrix-vector products, there-
fore it is not necessary to store the full matrix in memory.
The regularization applied is determined by the number of
iterations. If run for too many iterations, there is the risk
of fitting the noise, while if the number of iterations is not
enough the algorithm might not have converged.

3. EXPERIMENT

The dynamic sampling of RIRs is tested in an experimen-
tal study. The setup is shown in figure 1. Measurements
were performed in a IEC standardized listening room with
average reverberation time of 0.4 s in the frequency range

Figure 1. Experimental setup.

of interest and dimensions 7.5 × 4.74 × 2.8 m3. A Dy-
naudio BM6 loudspeaker was placed in the room, along
with a Universal Robots UR5 robotic arm. A measure-
ment microphone was attach to a 0.7 m metal rod, which
in turn was mounted on the robotic arm. A PC and sound
card placed outside the room were used to generate the
excitation signal, drive the loudspeaker, record the sound
pressure, and control the robotic arm. The pressure was
recorded at fs = 2048 samples/second during approxi-
mately 63 seconds. The excitation signal was a repeated
maximum length sequence [19] of length L = 1023 sam-
ples. The number of plane waves per frequency was
Q = 50, and the directions were uniformly sampled on
the surface of a sphere with unit radius.

The acquired data was processed in MATLAB. The
native implementation of the LSQR algorithm was used
to approximate the solution to (7). The algorithm was run
over one hundred iterations. The total processing time was
approximately two hours on a HP Z4-G4 workstation.

The microphone trajectory is shown in figure 2. The
trajectory defined was a Lissajous curve. The curve avoids
the central part, where the base of the arm is placed, since
the robot arm cannot reach this area. To accurately track
the microphone position, the robot controller was queried
at a 100 Hz rate while performing the dynamic sampling.
The positioning data provided by the controller was then
upsampled using linear interpolation and used for the RIR
reconstruction as described in equations (1) to (6). The
position and pressure data were synchronized by a trigger
that signaled when the robot arm started to move.

Extensive validation data was additionally acquired
with the same setup. In this case the robot was pro-
grammed to move the microphone sequentially at M =
880 positions defined on a plane that crossed the trajec-
tory of the dynamic measurement (see gray dots in figure
2). The RIR at each of these locations was measured using
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Figure 2. (a) Microphone trajectory and positions of
reference measurements. (b) Side view. (c) Top view.
(d) x, y, z coordinates of the microphone position as
a function of time.

a 5 seconds logarithmic sine sweep, with a total measure-
ment time of approximately 2 hours for the entire plane.

Impulse responses reconstructed from the dynamic
measurements as well as the corresponding reference ones
are shown in figure 3. Figure 3(a) shows the response at
an interpolated position (marked in red in figure 2), i.e.,
a position within the measurement volume, but not di-
rectly on the trajectory of the moving microphone. The
reconstruction is very accurate along the entire RIR both
in terms of amplitude and phase, although the high fre-
quencies present in the direct sound are slightly underesti-
mated. Figure 3(b) shows the response at an extrapolated
position (marked in blue in figure 2). The reconstruction
accuracy degrades compared with the interpolated point,
as this position is relatively far from the trajectory. The
direct sound and early reflections are distinguishable and
the phase is recovered to some extent, yet their amplitude
is overestimated. In addition, some ringing at the begin-
ning of the impulse response is observable, probably due
to the bandlimitation of the reconstruction.

The reconstruction error in the reference plane is
quantitatively analyzed in terms of the mean squared er-
ror

10 log
1

M

M−1∑
m=0

|H(rm, l)− H̃(rm, l)|2, (8)

and the spatial correlation∣∣∣∑M−1
m=0 H∗(rm, l)H̃(rm, l)

∣∣∣(∑M−1
m=0 H∗(rm, l)H(rm, l)

)(∑M−1
m=0 H̃∗(rm, l)H̃(rm, l)

) ,
(9)

where H̃(rm, l) and H(rm, l) are the reconstructed and
reference frequency responses, respectively, at the refer-
ence plane positions rm (gray dots in figure 2). The spa-
tial correlation takes values between one (indicating per-
fect correlation between reference and reconstruction) and
zero.

Figure 4(a) and (b) show the mean squared error and
the spatial correlation as a function of frequency, respec-
tively. At frequencies below 500 Hz, the mean squared
error is below -10 dB and the spatial correlation is above
0.8, indicating very accurate reconstructions. As the fre-
quency increases the spatial distribution of sound pressure
becomes more complex, which results in a higher mean
squared error and lower spatial correlation.

The sound pressure over space is further analyzed in
figure 5. The figure shows the magnitude of the frequency
response on the reference plane at 200, 400, 500 and 750
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Figure 3. Impulse response. (a) For a point within the trajectory (red dot in figure 2
) (b) For a point outside the trajectory (blue dot in figure 2).
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Figure 4. Error of the reconstructed responses at the
reference plane as a function of frequency (a) Mean
squared error. (b) Spatial correlation.

Hz. For 500 Hz and below the spatial distribution of sound
pressure is well recovered, including the areas of small
pressure that result from mode interference. Even if at 750
Hz the reconstruction degrades, the pressure distribution
is still plausible, specially closer to the area covered by
the trajectory.

4. DISCUSSION

The results show that accurate RIRs reconstructions can
be obtained from real dynamic measurement data. In
particular, the areas close the microphone trajectory are
very well recovered and, for the parameters in our exper-
iment, frequencies below 500 Hz are correctly estimated.
Nonetheless, the frequency range and reconstruction area
could be extended by increasing the length of the trajec-
tory and measurement time. The measurement time of
our experiment was approximately one minute to mea-
sure on an area of approximately 0.5 m3, which is very
short compared with the total time that this type of RIR
measurements normally entail. The reduction in acquisi-
tion time offered by dynamic measurements becomes even
more interesting when measuring over very large areas,
e.g., across several hundred meters. The accuracy of the
results could also be improved by optimizing the micro-
phone trajectory and speed.
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Figure 5. Magnitude of the frequency response on the reference plane (gray dots in figure 2) at 200, 400, 500
and 750 Hz. Top row: reference. Bottom row: reconstruction.

5. CONCLUSION

This work presents one of the first experimental studies
of dynamic RIR measurements with real data and in a real
room. A robotic arm was used to continuously move a mi-
crophone while acquiring pressure data. The experimen-
tal results demonstrate that dynamic measurements can
achieve accurate RIR estimations over space, particularly
in the low frequency range. These findings indicate that
dynamic measurements can significantly reduce the ex-
perimental effort compared to traditional static methods,
with potential applications in sound field control, room
compensation, and loudspeaker system calibration.

The use of a robotic arm not only made it possible
to track the microphone position accurately but also pro-
vided ground truth measurements for evaluating the accu-
racy of the reconstructions. In conclusion, dynamic RIR
measurements with a robotic arm offer a promising al-
ternative to conventional methods, providing efficient and
accurate characterization of sound fields.
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