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ABSTRACT

Acoustic additive black hole (ABH) pillars are known to
significantly reduce vibration energy from a host plate.
However, little has been done to investigate their perfor-
mance when the host plate partially encloses a water-filled
resonant cavity, a problem that may be important for ma-
rine applications. In this work, the ability of ABH pil-
lars to reduce the acoustic energy of the cavity is inves-
tigated and compared to that of standard uniform pillars.
The elastoacoustic problem is solved using a displacement
formulation and Gaussian basis functions are employed
to expand all the unknowns of the problem. Boundary
and coupling conditions are imposed using the null space
method (NSM). The results show that ABH pillars can
substantially reduce the acoustic energy of the cavity, out-
performing uniform pillars despite their lower mass.

Keywords: Acoustic black holes, Vibroacoustics, Heavy
fluid, Nullspace method

1. INTRODUCTION

In recent years, acoustic black hole (ABH) technology
has garnered a great deal of attention for its effectiveness
in mitigating noise in fluid systems. Bowyer and Krylov
[1] pioneered experimental investigations into the acous-
tic radiation of ABH plates, demonstrating that rectangu-
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lar plates with tapered indentations can effectively reduce
acoustic power radiation. Subsequently, the vibroacoustic
behavior of ABH plates coupled to air cavities but their
connection to heavy fluids has only started recently. In [2],
the fluid-structure interaction of ABHs with heavy fluids
was addressed by showing the suppression potential of a
composite plate-cavity ABH system under heavy fluid ex-
citation, achieving sound pressure level reductions of 4-9
dB above 300 Hz. More recently, the underwater acoustic
radiation characteristics of ABH plates were further exam-
ined demonstrating superior underwater sound power sup-
pression between the cut-on and critical frequencies [3,4].

Although embedded ABH configurations are the most
common, they compromise the original stiffness of the
host plate due to thickness adjustment. To overcome these
limitations different types of additive ABHs have been
proposed. In [5], a dynamic vibration absorber with ABH
features (ABH-RBD) was set on a uniform beam achiev-
ing effective vibration suppression without compromising
structural integrity. Subsequently, symmetric [6] and ec-
centric [7] circular ABH dynamic vibration absorbers (2D
ABH-DVA) were developed to reduce vibrations in uni-
form plates. Additional research has been conducted on
spiral ABHs [8], curved ABHs [9], and ABH pillars [10]
as additive structures.

In this study, we propose to place multiple ABH pil-
lars on a uniform beam coupled to a cavity to reduce noise
in a cavity filled with heavy fluid. The equations of mo-
tion for the fluid-structure coupling system are established
from the displacement formulation in [11], using Gaus-
sian basis functions (GEM expansion method in [12-14])
and the nullspace method (NSM) [15] to impose boundary
coupling conditions. Finally, the noise reduction capabil-
ity of the proposed configuration is computed.
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2. THEORETICAL MODEL
2.1 Problem description

As illustrated in Fig. 1, to mitigate the noise inside a
water-filled cavity with dimensions L x L. (highlighted
in the blue region), multiple ABH pillars are uniformly
mounted on a uniform beam with thickness h,. The
thickness profile of each ABH pillar follows a power-
law distribution given by hg(r) = ez™ + h., where
e = (hg — hy)/ri. At the ends of the ABHs, some
damping layers 74 X hq (highlighted in the brown region)
have been attached to favor energy dissipation. The ge-
ometry and material parameters of the coupled system are
detailed in Tab. 1.
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Figure 1. Illustration of the base beam with ABH
pillars coupled to a cavity. The blue region indicates
the cavity filled with water, while the brown regions
represent the damping layers.

2.2 Fluid-Structure Interaction Model

The displacements are represented by variables u.(x, y),
ve(z,y) for the fluid within the cavity and by wy(z,t),
up(x, t) for the uniform beam, respectively. Similarly, the
flexural and longitudinal displacements of the ABH pillars
can be expressed as wg;(x,t) and uq;(x,t), where j =
1,2,...,5 denotes the index of the ABH pillars. They are

Table 1. Geometry and material parameters of the
coupled system.
Geometry parameters
ch = Lb =0.8m

Material parameters
pe = 1000 kg/m?

Ley = 0.6m ce = 1500 m/s
hy = hy = 5mm ne = 0.02

m =2 pp = pa = 7800kg/m?3
Tabh — 0.4m Eb = Ea = 210 GPa
e =0.028m~! Ny = nq = 0.005

h, = 0.5mm pa = 950 kg/m?
rq=0.2m E; =5GPa
hg=1m Nqg = 0.5

expanded as

=CT(1)0up.(2,y),v. = CT(£)0yp,(z,y), (1)
wy, = B (t)pp1 (2), us = By (t)py(), )
Waj = AJ;(1)Paj1 (1), Uaj = Al ()@a0(x),  (3)

where ¢ (z,y) = a(r) ® B(y) are 2D Gaussian func-
tions for the 2D cavity, ¢, (%), @pe(x), and @, (),
Paj2(z) (5 = 1,2,...,5) are the 1D Gaussian functions
for the base beam and the five ABH pillars, respectively.
C, By, By, Aj1, and Aj, are the coefficient vectors to
be determined. The assembled coefficients are defined as
q = [C,Bl,BQ,Aj], where Aj = [Ajl,Ajg}.

The Lagrangian of the coupled system is the summa-
tion of the Lagrangians of its three components, namely,
the cavity, the uniform beam, and the five ABH pillars.
This leads to,

£:T0+Tb+Ta7Uc7Ub7Ua7 (4)

where T; and U; (i = a, b, ¢) represent the Kinetic energy
and potential energy of each structure.

By substituting the above expressions into the Euler-
Lagrange equations, we can derive the equations of mo-
tion,

(K —w?*M)Q =0, (5)

where K and M are the stiffness and mass matrices, re-
spectively. However, the above derivation does not ex-
plicitly consider the essential boundary conditions of the
cavity and the uniform beam, nor the coupling ones at the
substructure interfaces. These are accounted for by means
of the nullspace method.
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The three walls of the cavity are rigid, which implies,

uc(O,y) =0, uc(szy) =0, ’Uc(m7 0) =0. (6)

As for the base beam, it is simply supported on the cav-
ity and coupled with its the upper boundary. The ABH
pillars and the uniform beam are coupled at intervals of
d = Ly /6. These conditions are described by the follow-
ing equations:

wp(0) =0, wyp(Ly) =0, (7
up(0) =0,  up(Ly) =0, ®)
wy(x) = ve(z, Ly), ©)
wy(z;) = ug;(0), wup(xj) = wae;(0), (10)
Ogwp(xj) = —0,wq;(0), (11)

where x; denotes the connection points of the j-th ABH
pillar on the base beam (j = 1,2,...,5).

Substituting Eqn. (1) to Eqn. (3) into Eqn. (6) to
Eqn. (11), we obtain,

EQ=%'Q=0, (12)

where = is the matrix form of the above constraints.
To avoid numerical instabilities, we square and inte-
grate Eqn. (12) over the interface domain, which yields,

QT [/ <I>T<I>dx,] Q=Q"¥Q (13)

where, we have defined matrix W is the constant con-
straint matrix. Finding a basis for the nullspace N (¥),
we can express @ as Q = Zk, with Z containing the
nullspace eigenvectors and k being the coefficient vector.
Substituting into the equation of motion, Eq. (5), we arrive
at,

(K —w’M) k=0, (14)

where K = Z'KZand M =Z2Z"M2Z, represent the
coupled stiffness and mass matrices, respectively.

3. NUMERICAL RESULTS

To evaluate the performance of ABH pillars in reducing
noise inside the cavity, a unit point force is applied at the
left 2 ¢ of the uniform beam, see Fig. 1.

In Fig. 2, we first present the mean square velocity
(MSV) of the host beam. It is observed that if ABH pillars
are attached to it instead of uniform (UNI) pillars, the vi-
bration becomes significantly reduced. On the other hand,

Fig. 3 presents the acoustic energy (F = T, + U,) within
the cavity. The results indicate again that ABH pillars are
more effective than uniform pillars over almost the entire
frequency range.
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Figure 2. Mean square velocity (MSV) of the host
beam.
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Figure 3. Acoustic energy in the water-filled cavity.

4. CONCLUSION

This paper proposes attaching ABH pillars to host plate to
reduce noise transmission inside a heavy-fuid filled cavity.
The displacements of the ABH pillars, the base beam, and
the fluid have been represented using the Gaussian expan-
sion method (GEM), while the nullspace method (NSM)
has been employed to impose the essential boundary and
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continuity conditions of the problem. The results indicate
that ABH pillars can significantly dampen the vibrations
of the uniform beam and reduce the energy transmission
to the cavity, thus showing excellent noise reduction capa-
bility.
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